Приложение к рабочей программе дисциплины Биотехнология продуктов питания из водных биоресурсов

Направление подготовки — 19.04.03 Продукты питания животного происхождения Учебный план 2021 года разработки

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1. Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине – совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения, а также уровня сформированности всех компетенций (или их частей), закрепленных за дисциплиной. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формированием компетенций, определенных в ФГОС ВО по направлению подготовки 19.04.03 Продукты питания животного происхождения;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение в образовательный процесс университета инновационных методов обучения;
 - самоподготовка и самоконтроль обучающихся в процессе обучения.

2. Структура ФОС и применяемые методы оценки полученных знаний

2.1 Общие сведения о ФОС

ФОС позволяет оценить освоение всех указанных в рабочей программе дескрипторов компетенции, установленных ОПОП. В качестве методов оценивания применяются: наблюдение за работой, применение активных методов обучения, экспресс-опрос, экспресстестирование. Структурными элементами ФОС по дисциплине являются: ФОС для проведения текущего контроля, состоящие из устных, письменных заданий, экспресс-опросов, тестов, шкала оценивания; ФОС для проведения промежуточной аттестации, состоящие из устных, письменных заданий, и других контрольно-измерительные материалов, описывающих показатели, критерии и шкалу оценивания.

Применяемые методы оценки полученных знаний по темам дисциплины

Темы	Текущая аттестация (количество заданий, работ)			Промежуточная аттестация
	Экспресс-опрос на лекциях по текущей	Выполнение тестовых	Выполнение самостоятельных	
	теме	заданий	заданий на семинарских занятиях	
Тема 1. Биотехнология: термины, определения; положения программы «БИО-2020». Биотехнологический потенциал ВБР	+	+	+	экзамен

		T	T	T
Тема 2 . Основные процессы в биотехнологии ВБР	+	-	+	экзамен
Тема 3 . Технология белковых				
продуктов из ВБР	+	+	+	экзамен
Тема 4. Получение и				
применение биорегуляторов				
технологических процессов	+	+	+	экзамен
из ВБР				
Тема 5. Технология				
биопродуктов на основе	+	+	+	экзамен
липидов ВБР				
Тема 6. Технология				
биополимеров-	+	+	+	экзамен
структурообразователей из	I	'	'	JKSamen
ВБР				
Тема 7. Основы технологии				
высокоминерализованных и	+	+	+	экзамен
витаминных биопрепаратов				
Тема 8. Биотехнология				
комбинированных пищевых				
продуктов на основе	+	+	+	экзамен
гидробионтов				
Тема 9. Технология				
биологически активных				
веществ из морских	+	+	+	экзамен
гидробионтов				
		l	l .	l

2.2 Оценочные материалы для проведения текущего контроля

2.2.1 Экспресс опрос на лекциях по текущей теме

Тема 1. Биотехнология: термины, определения, положения комплексной программы развития. Биотехнологический потенциал ВБР

Лекция 1. Биотехнология: термины, определения, объекты, классификация и виды. Пищевая биотехнология. Роль биотехнологии в создании продуктов нового поколения из ВБР. Основные положения Государственной координационной программы развития биотехнологий в РФ – Программы «БИО-2020».

Контрольные вопросы
1. Дайте определение биотехнологии как науке.
2. Какие классификации и виды биотехнологии Вы знаете?
3. Что является стратегической целью Комплексной программы развития биотехнологии РФ?
4. Что включает в себя понятие «пищевая биотехнология»?
5. Какие источники пищи называют генетически модифицированными?

Лекция 2. Биотехнологический потенциал ВБР. Классификация ВБР по биопотенциалу. Критерии выбора ВБР для применения в биотехнологии. Схема рационального обоснования использования гидробионтов в биотехнологии.

Контрольные вопросы

- 1. Какие факторы обуславливают выбор гидробионтов для их использования в биотехнологии?
- 2. Что такое биологическая и пищевая ценность продукта?
- 3. Какими показателями можно объективно оценить биологический потенциал сырья?

Тема 2. Основные процессы в биотехнологии ВБР

Лекция 3. Массообменные процессы разделения гомогенных и гетерогенных систем. Экстракция при извлечении БАВ из биологического сырья, основные виды экстракции в различных системах. Примеры экстракций в биотехнологии продуктов из ВБР. Абсорбция и десорбция. Дистилляция и ректификация, виды, основные факторы, примеры при получении БАВ. Кристаллизация субстанций на основе гидробионтов. Сушка как способ сохранения биопотенциала ВБР, виды сушки, перспективы использования в биотехнологии. Основные процессы в биотехнологии ВБР. Систематизация биотехнологических процессов

Контрольные вопросы

- 1. Дайте определение экстракции, коэффициентов распределения и разделения (извлечения).
- 2. Какие требования предъявляются к экстрагенту?
- 3. Виды экстракции.
- 4. Что такое процесс абсорбции?
- 5. В чем сущность процесса адсорбции?
- 6. Какими свойствами должны обладать адсорбенты?
- 7. Суть процесса дистилляции?
- 8. Назовите основные группы биотехнологических процессов.

Тема 3. Технология белковых продуктов из ВБР

Лекция 4. Роль белков ВБР в питании и обеспечении здоровья человека. Белковые продукты микробиологического синтеза. Показатели биологической ценности белков и белковых продуктов ВБР. Небелковые азотистые вещества в тканях и органах гидробионтов. Классификация белковых продуктов из ВБР.

Лекция 5. Технологические схемы производства белковых гидролизатов, концентратов, соусов, напитков, БАД и биопрепаратов на основе ВБР.

Тема 4. Получение и применение биорегуляторов технологических процессов из ВБР

Лекция 6. Характеристика ферментов рыб. Свойства и механизм действия ферментов. Кинетика ферментативного гидролиза. Получение ферментативных белковых гидролизатов из рыб и беспозвоночных. Коллоидно-химические свойства ферментативных белковых гидролизатов. Области применения белковых гидролизатов. Основные отечественные ферментные препараты из внутренностей рыб, криля, кукумарии, кальмаров и других гидробионтов

Контрольные вопросы

- 1. Дайте определение ферментам как классу веществ.
- 2. Назовите основные классы ферментов.
- 3. Ко-фактор это...
- 4. Перечислите основные коллоидно-химические свойства ферментативных белковых гидролизатов.

Тема 5. Технология биопродуктов на основе липидов ВБР

Лекция 7. Состав, строение и функции биологически активных веществ (БАВ) из липидов гидробионтов. Основные источники полиненасыщенных жирных кислот, содержание в рыбах, голотуриях, ракообразных, водорослях и других ВБР. Фосфолипиды, классификация, биохимическая роль, источники. Тетратерпены (каротиноиды): состав, функции, источники, способы выделения. Сапонины: основные источники, биохимические функции.

Лекция 8. Методы выделения и рафинации липидов. Виды жиров из гидробионтов. Технологии препаратов и концентратов БАВ («Витамина А в жире», концентраты ПНЖК, рыбные жиры обогащенные, кальмаровый жир).

Контрольные вопросы

- 1. Как подразделяют рыб по содержанию жира?
- 2. Какие основные стадии включает процедура извлечения липидов из тканей гидробионтов?
- 3. Как изменяется концентрация фосфолипидов рыб в преднерестовый и нерестовый периоды?
- 4. Какие каротиноиды и каротиноидные соединения гидробионтов Вы знаете?

Тема 6. Технология биополимеров-структурообразователей из ВБР

Лекция 9. Сырьевые источники и классификация биополимеров-структурообразователей гидробионтов. Характеристика биополимеров полисахаридной природы из морских растений (фикоколлоиды: агар, агароид, агаропектин, ламинарин, каррагенаны, фурцеллеран, зостерин, альгиновые кислоты и их соли).

Лекция 10. Полиаминосахариды гидробионтов: виды, значение в биотехнологии. Биополимеры-структурообразователи белковой природы, научные основы получения коллагенсодержащих продуктов.

Контрольные вопросы

- 1. Источники получения биополимеров-структурнообразователей гидробионтов.
- 2. На какие группы по химической природе разделяют биополимеры гидробионтов?
- 3. Приведите примеры фикоколлоидов, аминополисахаров, структурообразователей белковой природы из гидробионтов.

Тема 7. Основы технологии высокоминерализованных и витаминных биопрепаратов

Лекция 11. Характеристика наиболее ценных минеральных компонентов гидробионтов. Витамины гидробионтов.

Лекция 12. Биотехнологии получения функциональных высокоминерализованных продуктов из рыб, водорослей и беспозвоночных.

Контрольные вопросы

- 1. Приведите примеры наиболее ценных минеральных компонентов гидробионтов.
- 2. Признаки недостаточности и избытка витаминов в организме.
- 3. Какие минеральные вещества аккумулируются в гидробионтах?
- 4. Какие факторы обуславливают качественный и количественный минеральных состав морепродуктов?

Тема 8. Биотехнология комбинированных пищевых продуктов на основе гидробионтов

Лекции 13. Научные основы создания комбинированных продуктов питания на основе гидробионтов.

Лекция 14. Перспективные направления развития биотехнологии комбинированных пищевых продуктов на основе гидробионтов

Контрольные вопросы

- 1. Назовите важнейший показатель биологической ценности.
- 2. Перечислите требования к выбору рыбного сырья, которое может быть использовано для изготовления поликомпонентных продуктов питания с задаваемой структурой и комплексом показателей пищевой адекватности

Тема 9. Технология биологически активных веществ из морских гидробионтов

Лекция 15. Классификация биологически активных веществ по химическому строению и основные методы их выделения

Лекция 16. Технология БАВ гидробионтов

Контрольные вопросы

- 1. Перечислить основные группы веществ в класссификации биологически активных веществ по химическому строению
- 2. Дайте определение понятию «биологически активные вещества» (БАВ).
- 3. Назовите источник получения хондроитинсульфата.
- 4. Назовите источник получения хитина
- 5. Источником каких БАВ могут служить беспозвоночные и отходы их переработки?

Критерии оценивания

Оценивание текущего экспресс-опроса осуществляется по двухбалльной шкале оценивания: «зачтено», «не зачтено». Оценка «зачтено» выставляется в случае правильного ответа на все вопросы экспресс-опроса (допускается наличие неточностей в ответах не более чем в 50 % вопросов). Время на прохождение экспресс-опроса — 5-10 минут; количество попыток прохождения экспресс-опроса — 2.

Критерии оценивания при текущем контроле (экспресс-опрос на лекциях по текущей теме):

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа.

2.2.2 Тестовый контроль пройденного материала

Примеры тестовых заданий

- 1. Пищевая биотехнология направлена на... использование биопотенциала микроорганизмов в промышленных целях получение биологически активных веществ, которые применяются в пищевых целях использование методов биотехнологии с целью получения пищевой продукции повышенной биологической ценности
 - 2. Морская биотехнология это...

использование биопотенциала известных гидробионтов и создание на его основе новых видов рыб и морепродуктов, а также на разработку способов их комплексного полезного использования

получение биологически активных веществ из ВБР, которые применяются в пищевых целях. применение биотехнологических методов при ведении сельского хозяйства.

3. В каких производствах пищевой промышленности используются биохимические процессы?

для получения антибиотиков, белков, витаминов, ферментов в хлебопекарном, спиртовом, консервном производствах для получения растительного масла

4. Приоритетами в пищевой биотехнологии являются... пищевой белок и пищевые ферменты функциональные пищевые продукты; пребиотики, пробиотики, синбиотики глубокая переработка сырья все ответы верны

5. К объектам биотехнологии относят...

биологические объекты, процессы в системах и технологиях, результаты изменений в биотехнологических системах, методы исследования, качество готовой продукции живые организмы (вирусы, бактерии, растения, водоросли, простейшие, клетки растений и животных, хромосомы, ген, БАВ) генетически модифицированные организмы

6. Акваресурсная биотехнология – ...

раздел биотехнологии, занимающийся решением экологических проблем биотехнологическими методами

раздел биотехнологии, занимающийся разработкой теории и практики создания пищевых продуктов общего, лечебно-профилактического и специального назначения раздел биотехнологии, занимающийся вопросами изучения гидробионтов, водных животных и растений и получения из них целевых продуктов

7. Основные этапы любого биотехнологического процесса — это... подготовка штамма и его культивирование подготовка штамма, его культивирование и выделение целевого продукта подготовка питательной среды, подготовка штамма, его культивирование, выделение целевого продукта подготовка питательной среды, подготовка штамма, его культивирование, выделение целевого

8. Пищевые пребиотики – ...

продукта, придание товарной формы целевому продукту

вещества, стимулирующие работу микроорганизмов или синтез БАВ, входящих в состав пробиотиков

БАДы к пище, в состав которых входят живые организмы и(или) их метаболиты, оказывающие нормализирующее воздействие на состав и биологическую активность микрофлоры пищеварительного тракта обогащенный пищевой продукт

9. Пишевые синбиотики – ...

комплексные препараты, содержащие одновременно пробиотики и пребиотики

пробиотики, содержащие в своем составе несколько видов полезных бактерий непатогенные для человека микроорганизмы, которые способны восстанавливать нормальную микрофлору органов, а также губительно воздействовать на патогенные и условно-патогенные бактерии

10. Физиологически функциональный пищевой ингредиент, представляющий собой комбинацию про- и пребиотиков – это... эубиотик парафармацевтик

синбиотик

пищевая добавка

11. Степень сбалансированности продукта по биологически активным веществам – ...

биологическая ценность продукта

пищевая ценность продукта

энергетическая ценность продукта

12. Пищевой белок - ...

высокомолекулярные вещества, применение которых в животноводстве позволяет повысить усвояемость кормов и обеспечивает возможность более гибко использовать доступное кормовое сырье

белок, полученный из растений, дрожжей или микроводорослей

группа белковых катализаторов, используемых в технологических процессах производства спирта и пива, в хлебопечении и кондитерской промышленности, крахмалопаточном производстве и производстве глюкозно-фруктозных сиропов, молочной промышленности, при переработке фруктов, в том числе виноделии

13. В структурном отношении все липиды являются...

простыми эфирами

высшими спиртами

сложными эфирами жирных кислот

полициклическими спиртами

14. К структурным липидам относятся все перечисленные ниже кроме:

фосфолипидов

гликолипидов

триглицеридов

стеридов

15. Продуцентами белка являются:

бактерии, дрожжи, цианобактерии, водоросли, простейшие

только цианобактерии и дрожжи любые микроорганизмы и плесневые грибы цианобактерии, дрожжи, бактерии

- 16. Указать несоответствие. Экстрагент, применяемый для извлечения веществ из водного раствора, должен удовлетворять следующим требованиям:
- хорошо растворять в себе извлекаемое вещество;
- по возможности больше отличаться по плотности от воды, т.е. быть тяжелее или легче воды;
- вязкость его должна быть низкой. Эти условия нужны для легкого расслоения фаз;
- растворим в воде;
- химически инертен по отношению к извлекаемому веществу.
- должен быть легколетучим растворителем, чтобы последующее удаление его не вызывало затруднений.
 - 17. Испарение жидкости с последующим охлаждением и конденсацией паров ...

дистиляция;

адсорбция:

мацерация,

анфлеранж.

18. Диффузионный процесс, в котором участвуют две фазы: газовая и жидкая.

адсорбция

абсорбция

дистиляция экстракция

19. Дигерирование отличается от мацерации лишь тем, что экстракция проводится ... при охлаждении

нагревании

в присутствии растворителя при интенсивном перемешивании

20. Различают следующие вида адсорбции:

физическую

ионизационную

химическую

ферментативную

21. Полиморфизм - ...

явление образования смешанных кристаллов из химически однотипных и сходных по кристаллографическим признакам веществ

явление образования при различных термодинамических условиях одними тем же веществом разных по симметрии и форме кристаллов

22. Относится ли процесс сушки к термодиффузионным процессам?

Нет

Ла

При определенных условиях

23. Тепло к материалу подводится теплопроводностью через стенку, разделяющую материал и теплоноситель, при ... сушке.

конвективной

радиационной

диэлектрической

сублимационной

контактной

24. При низких температурах и глубоком вакууме влага, находящаяся в твердой фазе, испаряется без перехода в жидкое состояние

сублимационная сушка

конвективная сушка

радиационная сушка

контактная сушка

25. Фермент, расщепляющий крахмал и гликоген до мальтозы — ...

амилаза

липаза

мальтаза

26. Гидролиз триглицеридов с образованием моноглицеридов и жирных кислот осуществляется с помощью ...

амилазы

липазы

протеазы

27. Ферменты, способные отщеплять различные группы от субстрата негидролитическим
путем (без участия воды) с образованием двойных связей
изомеразы
трансферазы
гидролазы
липазы
лигазы

28. Ферменты, осуществляющие перенос различных радикалов, остатков аминогрупп и др.

изомеразы

трансферазы

гидролазы

липазы

лигазы

29. Ферменты, катализирующие гидролитическое расщепление белков и пептидов (пептидазы или пептидгидролазы), углеводов (гликозидазы) и др.

изомеразы

трансферазы

гидролазы

липазы

лигазы

30. Расщепляет протеины и полипептиды внутри молекулы белка, преимущественно в зоне аргинина и лизина — \dots

амилазы

трипсин

мальтазы

31. К каким соединениям относятся белки, полисахариды? макроциклическим промежуточным соединениям

биополимерам

32. К моносахаридам относится...

мальтоза

фруктоза

лактоза

гепарин

гликоген

33. Глюкоза является...

кетогексозой

кетопентозой

альдогексозой

альдопентозой

дисахаридом

34. Физиологически важным гомополисахаридом является...

гиалуроновая кислота хондроитинсульфат **гликоген** пеллюлоза

35. К резервным полисахаридам не относится...

клетчатка

гликоген декстраны амилопектин

36. Какие биологически активные вещества продуцируют дрожжи и грибы? антибиотики, гиббереллины, цитокинины, каротиноиды дрожжи и грибы являются продуцентами белка дрожжи и грибы используются для получения сыров типа рокфор, камамбер и соевого соуса

37. ... – совокупность приемов, методов и технологий получения рекомбинантных РНК, ДНК, выделения генов из организма (клеток), осуществление манипуляций с генами и введения их в другие организмы

генная инженерия клеточная инженерия

амплификация

38. Трансгенез – это... образование дополнительных копий хромосомных последовательностей ДНК изменение положения генов в хромосомах

перенос генов в клетки и организмы многоклеточных организмов

39. Какие фазы имеют место при культивировании микроорганизмов? экспоненциальная и лаг-фаза

лаг-фаза, экспоненциальная, фаза снижения скорости роста, стационарная и фаза отмирания

лаг-фаза, экспоненциальная фаза, фаза постоянной скорости

- 40. При каких условиях справедливо уравнение кинетики роста микроорганизмов? в отсутствии дефицита питательных веществ в отсутствии дефицита кислорода от гидродинамики
- 41. От каких факторов зависит значение коэффициента массоотдачи при абсорбции кислорода? от температуры и давления в ферментаторе эффективности перемешивания в культуральной жидкости концентрации
- 42. Что является движущей силой массопереноса при абсорбции кислорода? разность концентрации кислорода разность концентрации биомассы скорость перемешивания.
- 43. Какое сырье используется для выращивания микроорганизмов? наиболее дешевое

содержащее углеводы

содержащее углеводороды

44. Во сколько групп можно систематизировать биотехнологические процессы? в две группы пять групп

три группы

45. Сколько выделяют основных стадий биотехнологического процесса?

3

5

4

46. От каких параметров зависит коэффициент удельной скорости роста? от гидродинамических параметров, вида микроорганизмов давления и температуры

от количества биомассы

47. По какой причине происходит замедление скорости накопления биомассы при культивировании?

число делений микроорганизмов ограничено

конкуренция за субстрат

ингибирование продуктами метаболизма

- 48. Что является общей скоростью роста микроорганизмов? **отношение прироста биомассы за малый промежуток времени** прирост биомассы в единице объема ферментатора прирост биомассы на 1 m^2
- 49. От каких параметров зависит коэффициент удельной скорости роста? от гидродинамических параметров, вида микроорганизмов давления и температуры

от количества биомассы

50. Среды, употребляемые для выделения и выращивания тех патогенных микробов, которые на обычных средах развиваются неудовлетворительно или совсем не растут, называются...

простыми, или обычными

специальными

дифференциально-диагностическими

51. По отношению к молекулярному кислороду можно выделить три группы микроорганизмов. Облигатные аэробы способны...

получать энергию только путем дыхания и поэтому нуждаются в O_2 расти только в среде, лишенной O_2

растут как в присутствии, так и в отсутствии О2

52. Факультативно-анаэробные бактерии (Enterobacteriaceae) и многие дрожжи могут... расти в присутствии атмосферного O_2 , но не способные его использовать – они получают энергию с помощью брожения

переключаться с дыхания (в присутствии O_2) на брожение (в отсутствии O_2) расти только в среде, лишенной O_2

53. Эффективность биопроизводства на этапе промышленного получения биомассы или продуктов метаболизма микроорганизмов в основном зависит: от оптимальности для рода микроорганизмов питательной среды и производственного контроля за ее изменениями оптимальности параметров внешней среды абиотических факторов контроля за их изменением правильности выбора вида (конструкции) биореактора и варианта культивирования микробов, обеспечивающих максимальность накопления биомассы в питательной среде

все ответы верны

54. Сложные азотосодержащие соединения, в основе которых лежат самые разнообразные гетероциклические ядра: пирролидин, пиридин, хинолин, изохинолин, индол, пурин и т. д.: гликозиды

ациклические (алифатические) терпеноиды

алкалоиды

циклические (гидроароматические) терпеноиды

55. К группе изопреноидов относятся... катехины, сапонины, антоцианидины **терпены, сапонины (стероиды)** олигосахара, лейкотриены, терпены хатконы, терпены, дигидрохалконы

56. К группе флавониидов относятся...

катехины, хатконы, антоцианидины

терпены, спонины флавоны, истинные алкалоиды хатконы, олигосахара, моносахара, дигидрохалконы

57. К группе эйкозаноидов относятся... псевдоалкалоиды, терпены простаноиды, стероиды простаноиды, лейкотриены катехины, дигидрохалконы

58. Органические соединения, молекула которых состоит из сахарной части и несахарной, связанных через атомы углерода, кислорода, серы или азота.

гликозиды

терпеноиды полисахариды флавоноиды

59. Наибольшее разнообразие гликозидов обусловлено строением...

агликона

гликона

60. Водные растворы этих БАВ при извлечении из сырья при встряхивании образуют стойкую пену, кроме того, они обладают гемолитической активностью сердечные гликозиды

сапонины

тиогликозиды

иридоиды

61. Наименее изученная группа гликозидов – горькие гликозиды, горечи – ... сердечные гликозиды

тиогликозиды

иридоиды

цианогенные гликозиды

62. Наиболее восстановленными флавоноидами являются...

катехины

флавонолы антоцианидины ауроны

63. Наиболее окисленными флавоноидами являются...

катехины

флавонолы

хромоны

антоцианидины

64. К гомополисахаридам относятся...

амилаза, амилопектин

камеди, пектин

хитин, хитозан

хондроитинсульфаты, гепарин

65. К гликозаминогликанам (ГАГ, линейным неразветвлённым полисахаридам, построенным из дисахаридных фрагментов) относятся...

гиалуроновая кислота

хондрогинсульфаты

гепарин, гепарансульфат

все ответы верны

66. Гликозаминогликан, содержащий глюкуроновую кислоту и N-ацетилглюкозамин, называется...

хондроитинсульфатом

гиалуроновой кислотой

кератансульфатом

гепарином

67. Гликозаминогликаны чаще всего находятся в тканях не в свободном состоянии, а в составе...

гликопротеинов

протеогликанов

68. Ретинол и ретиноиды являются...

жирорастворимыми витаминами

водорасторимыми витаминами

кристаллическими веществами, растворимыми в органических растворителях

69. Предшественником витамина А могут быть следующие группы веществ: каротины (α-, β- и γ-каротины) и ксантофиллы (β-криптоксантин)

эргокальциферол, холекальциферол токоферолы, токотриенолы рибофлавин, флавин мононуклеотид

70. Предшественником витамина D могут быть следующие группы веществ: пиридоксин, пиридоксамид токоферолы, токотриенолы филлохинон, манахинон эргокальциферол, холекальциферол

71. Провитамины витамина Е - ...

филлохинон, манахинон

токоферолы, токотриенолы

ретиналь, ретинол

филлохинон, манахинон

72. Источником хондоитинсульфата у рыб является...

печень

хрящи

молоки

кожа

73. Источником получения гуанина является...

чешуя

хрящи

кости

кожа

74. Содержание фосфолипидов высоко в ... рыб.

печени

бурой мышечной ткани

икре

желчном пузыре

75. ПНЖК присутствуют в значительном количестве в ... рыб.

крови и кроветворных органах

мышечной ткани

икре

печени

76. Сепия содержится в ...

коже головоногих моллюсков

отходах разделки внутренностей головоногих моллюсков

отходах разделки внутренностей голотурии

гладиусе, присосках головоногих моллюсков

77. Источником получения хитина служат (могут служить) ...

хрящи рыб

панцирь ракообразных, гладиус, присоски и клюв головоногих моллюсков раковины моллюсков

78. Тритерпеновые гликозиды присутствуют в ... внутренностях раковинных моллюсков

щупальцах и внутренностях голотурии

внутренностях головоногих моллюсков внутренностях ракообразных

79. Хондроитин выделен из...

щупальцев и внутренностей голотурии

полостной жидкости и внутренностей раковинных моллюсков кожи головоногих моллюсков

Критерии оценивания

Оценивание осуществляется по четырёхбалльной системе.

В процентном соотношении оценки (по четырехбалльной системе) выставляются в следующих диапазонах:

 «неудовлетворительно» («не зачтено»)
 менее 70 %

 «удовлетворительно» («зачтено»)
 71-80 %

 «хорошо» («зачтено»)
 81-90 %

 «отлично» («зачтено»)
 91-100 %

2.2.3 Выполнение индивидуального творческого задания

1. Подготовка доклада по заданной теме.

Примерные темы докладов на семинарских занятиях.

- 1. ГОСТ Р 57079-2016 Биотехнологии. Классификация биотехнологической продукции.
- 2. Основные виды биотехнологии с учетом сфер применения.
- 3. Принципы и факторы развития биорефайнинга.
- 4. Применение процесса ферментации при производстве продуктов питания.
- 5. Факторы, обуславливающие выбор гидробионтов для его использования в биотехнологии биологически активных веществ, добавок, пищевых продуктов.
- 6. Комплексная переработка головоногих моллюсков (схема, описание).
- 7. Комплексная переработка двустворчатых моллюсков (пищевые продукты, БАВ, БАД, кормовые продукты) (схема, описание).
- 8. Комплексная переработка антарктического криля.
- 9. Роль белка в питании человека. Рекомендуемая суточная норма потребления белка.
- 10. Микробиологический синтез, характеристика, основные понятия.
- 11. Характеристика основных продуктов биотехнологии микробного синтеза.
- 12. Промышленные методы биосинтеза продуктов микробного метаболизма.
- 13. Технологические схемы получения ферментных препаратов из гидробионтов.
- 14. Источники рыбного жира и его разновидности, биологическая ценность и способы производства и обогащения.
- 15. Фосфолипиды: роль и функции в организме.
- 16. Характеристика производных изопрена (стероиды и каротиноиды) гидробионтов.
- 17. Медико-биологические исследования жиров морских гидробионтов.
- 18. Жиры морских млекопитающих: состав и свойства.
- 19. Морские организмы как источники получения поливалентных металлов.
- 20. Высокоминерализированные добавки из раковин моллюсков и их применение.
- 21. Комплексная технологическая схема получения йодосодержащих продуктов из ламинарии японской.
- 22. Минералсодержащие композиции, изготовленные с применением гидробионтов (отечественного и зарубежного производства)
- 23. Приготовление рыбных паст, обогащенных минеральными компонентами.
- 24. Водо- и жирорастворимые витамины гидробионтов. Витаминоподобные вещества.

- 25. Производство витаминных препаратов. «Витамин А в жире». Производство витамина А.
- 26. Промышленный биосинтез витаминов группы В.
- 27. Водо- и жирорастворимые витамины гидробионтов.
- 28. Признаки недостаточности и избытка витаминов в организме.
- 29. Промышленный биосинтез витаминов группы В.
- 30. Промышленный биосинетез витаминов (примеры).
- 31. Витамины антиоксиданты.

Критерии оценивания

Оценивание доклада осуществляется по двухбалльной шкале оценивания: «зачтено», «не зачтено».

Показатели и шкала оценивания доклада:

Шкала оценивания	Показатели		
Зачтено	 обучающийся полно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике; подготовлена презентация; излагает материал последовательно и правильно с точки зрения норм литературного языка. 		
Не зачтено	 обучающийся обнаруживает незнание большей части соответствующего вопроса; допускает ошибки в формулировке определений и правил, искажающие их смысл; презентация отсутствует; беспорядочно и неуверенно излагает материал. 		

2.3 Оценочные материалы для проведения промежуточной аттестации

Экзамен

Условием допуска к промежуточной аттестации является получение по всем видам текущей аттестации оценки «зачтено».

Технология проведения экзамена — устный экзамен путем ответа на 3 вопроса теоретической части дисциплины по темам. Время подготовки к ответу не менее 40 минут.

Вопросы, выносимые на экзамен:

- 1. Определение биотехнологии как науки. Классификация.
- 2. Основные виды биотехнологии с учетом сфер применения.
- 3. Пищевая биотехнология
- 4. Применение процесса ферментации при производстве продуктов питания.
- 5. Применение методики генетической инженерии при производстве продуктов питания.
- 6. Стратегические задачи биотехнологии в «Комплексной программе развития биотехнологии РФ». Приоритеты современной пищевой биотехнологии.
 - 7. Основные процессы в биотехнологии ВБР.
 - 8. Систематизация биотехнологических процессов.
- 9. Факторы, обуславливающие выбор гидробионтов для его использования в биотехнологии биологически активных веществ, добавок, пищевых продуктов.
 - 10. Охарактеризуйте потенциал морских макро- и микроорганизмов.
- 11. Приведите комплексную схему переработки рыбного сырья при получении биопродуктов.
 - 12. Систематизация биотехнологических процессов по целевым продуктам.
 - 13. Характеристика ферментов рыб и нерыбных объектов промысла.

- 14. Общие свойства ферментов, отличающие их от обычных катализаторов.
- 15. Основные этапы ферментативного катализа.
- 16. Задачи инженерной энзимологии. Иммобилизованные ферменты, их применение.
- 17. Технологические схемы получения ферментных препаратов из гидробионтов.
- 18. Способы получения гидролизатов из ВБР.
- 19. Кинетика ферментативного гидролиза.
- 20. Коллоидно-химические свойства ферментативных белковых гидролизатов.
- 21. Области применения белковых гидролизатов.
- 22. Дайте определение экстракции, коэффициентов распределения и разделения (извлечения).
- 23. Основные требования при выборе водного сырья для использования в биотехнологии.
 - 24. Пищевая ценность гидробионтов.
 - 25. Отходы от разделки гидробионтов, как источник БАВ.
 - 26. Основные процессы в биотехнологии гидробионтов. Экстракция.
 - 27. Основные процессы в биотехнологии гидробионтов. Абсорбция.
 - 28. Основные процессы в биотехнологии гидробионтов. Адсорбция.
 - 29. Основные процессы в биотехнологии гидробионтов. Дистилляция и ректификация.
 - 30. Основные процессы в биотехнологии гидробионтов. Кристаллизация.
 - 31. Основные процессы в биотехнологии гидробионтов. Сушка.
 - 32. Основные процессы в биотехнологии ВБР.
 - 33. Систематизация биотехнологических процессов.
 - 34. Классификация рыбного сырья в зависимости от содержания липидов.
 - 35. Биологическая ценность липидов гидробионтов и их терапевтическая эффективность
- 36. Известные способы получения концентратов полиненасыщенных жирных кислот (ПНЖК). Концентраты ПНЖК и алкилглицеридов.
- 37. Известные способы получения концентратов полиненасыщенных жирных кислот (ПНЖК). Концентраты ПНЖК и их этаноламиды.
 - 38. Фосфатиды гидробионтов.
 - 39. Каротиноиды и каротиноидные соединения гидробионтов
 - 40. Способы выделения липидов из тканей гидобионтов.
- 41. Характеристика наиболее ценных минеральных веществ гидробионтов (водорослей, беспозвоночных, позвоночных: рыб, млекопитающих).
- 42. Основные направления выработки минеральных пищевых продуктов из гидробионтов.
 - 43. Биополимеры-структурнообразователи гидробионтов.
- 44. Минералсодержащие композиции, изготовленные с применением гидробионтов (отечественного и зарубежного производства).
 - 45. Продукты из водорослей, содержащие биодоступные минеральные вещества.

Критерии оценивания

Оценивание осуществляется по 4хбалльной системе:

- «5» (отлично): получены ответы на все вопросы экзаменационного билета, курсант четко и без ошибок ответил на все дополнительные вопросы по тематики экзаменационного билета;
- «4» (хорошо): получены ответы на все вопросы экзаменационного билета; курсант ответил на все дополнительные вопросы по тематики экзаменационного билета;
- «З» (удовлетворительно): получены ответы на 2 или 3 вопроса экзаменационного билета с замечаниями; курсант ответил не менее чем на 50 % дополнительных вопросов по тематики экзаменационного билета;

- «2» (не зачтено): получены ответы менее чем на 2 вопроса экзаменационного билета, курсант ответил менее чем на 50% дополнительных вопросов по тематики экзаменационного билета.