Приложение к рабочей программе дисциплины Высшая математика

Направление подготовки — 26.03.04 Инженерно-экономическое обеспечение технологий и бизнес-процессов водного транспорта

Направленность (профиль) — Инженерно-экономическое обеспечение бизнес-процессов организаций водного транспорта
Учебный план 2025 года разработки

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

1 Назначение фонда оценочных средств (ФОС) по дисциплине

ФОС по учебной дисциплине – совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения, а также уровня сформированности всех компетенций (или их частей), закрепленных за дисциплиной. ФОС используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений, навыков и формированием компетенций, определенных в ФГОС ВО;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/ корректирующих мероприятий;
- обеспечение соответствия результатов обучения задачам будущей профессиональной деятельности через совершенствование традиционных и внедрение в образовательный процесс университета инновационных методов обучения;
 - самоподготовка и самоконтроль обучающихся в процессе обучения.

2 Структура ФОС и применяемые методы оценки полученных знаний

2.1 Общие сведения о ФОС

ФОС позволяет оценить освоение всех указанных в рабочей программе дескрипторов компетенции, установленных ОПОП. В качестве методов оценивания применяются: наблюдение за работой, наблюдение за действиями в смоделированных условиях, применение активных методов обучения, экспресс-тестирование, программированные тесты.

Структурными элементами ФОС по дисциплине являются: входной контроль (при наличии) (предназначается для определения уровня входных знаний), ФОС для проведения текущего контроля, состоящие из устных, письменных заданий, вопросов, и шкалу оценивания, ФОС для проведения промежуточной аттестации, состоящий из устных, письменных заданий, и других контрольно-измерительные материалов, описывающих показатели, критерии и шкалу оценивания.

Применяемые методы оценки полученных знаний по разделам дисциплины

Темы		аттестация аданий, работ) Самостоятельное решение задач и объяснение их решения	Промежуточная аттестация
Тема 1. Элементы линейной алгебры	+	+	экзамен
Тема 2. Дифференциальное исчисление функции одной переменной	+	+	экзамен

Тема 3. Интегральное исчисление	+	+	экзамен
Тема 4. Дифференциальные уравнения	+	+	экзамен
Тема 5. Функции нескольких переменных	+	+	зачет
Тема 6. Теория вероятности	+	+	зачет
Тема 7. Элементы математической статистики	+	+	зачет

2.2 Оценочные материалы для проведения текущей аттестации

Входной контроль

Тестирование.

Входной контроль проводится с целью определения уровня знаний обучающихся, необходимых для успешного освоения материала дисциплины.

Содержание теста

Вопрос		Ответ
1. Упростите выражение:		-
$(\sin\alpha + \cos\alpha)^2 - 1$	A 0; B 1; B sin2α; Γ cos2α.	A
2. Решите неравенство:		-
$\frac{x+2}{7-x} \ge 0$	A [-2; 7]; B [-2; 7); B (-2; 7); Γ (-2; 7];	Б
3. Найдите производную функции		<u> </u>
$y = \sin x + 2x^6$	A $y = -\cos x + 2x^{5}$; B $y = \cos x + 12x^{5}$; B $y = -\cos x + 12x^{5}$; $\Gamma y = \cos x + x^{5}$.	В
4. Найдите диагональ параллелепипеда, если:		
измерения прямоугольного параллелепипеда равны 12, 9 и 8 м.	A 13; B 17 B 19 Γ 14	Б
5. Вычислить:		<u> </u>
$\sqrt[8]{16^7 \cdot \sqrt[4]{4}}$	A 4; B 16; B 8; Γ 32	Б
6. Решить уравнение:		
$\left(\frac{3}{7}\right)^{3x+1} = \left(\frac{7}{3}\right)^{5x-3}$	A 4; B 0,4; B 0,5; Γ 0,25	Г
7. Решить неравенство:		
$0.3^{7+4x} > 0.027$	A (-∞;-1); B (-1;∞); B (-1;1); Γ (1;∞);	A

Критерии оценивания

Оценивание входного тестирования осуществляется по номинальной шкале — за правильный ответ к каждому заданию выставляется один балл, за не правильный — ноль. Общая оценка каждого теста осуществляется в отношении количества правильных ответов к общему числу вопросов в тесте (выражается в процентах).

Уровень знаний обучающихся, необходимых для успешного освоения материала дисциплины, определяется по набранным баллам. При оценке 75 % и более правильных ответов уровень знаний обучающихся считается *достаточным* (оценка – зачтено). При оценке, меньшей 75 % правильных ответов уровень знаний обучающихся считается *недостаточным* (оценка – *не зачтено*).

Время прохождения теста – 30 минут.

Экспресс опрос на лекциях по текущим темам

Тема 1. Элементы линейной алгебры

Лекция 1. Матрицы и определители. Ранг матрицы.

Контрольный вопрос
1. Определение матрицы. Виды матриц.
2. Арифметические операции с матрицами.
3 Элементарные преобразования матриц. Ранг матрицы.
4. Правила вычисления определителей второго и третьего порядков.
5. Теорема Лапласа.

Лекция 2. Обратная матрица. Системы линейных алгебраических уравнений. Матричные уравнения.

y	рависиих.
	Контрольный вопрос
	1. Обратная матрица. Алгоритм нахождения обратной матрицы.
	2. Какие системы называются совместными, а какие – несовместными?
	3. Какие системы называются определенными?
	4. Решение системы линейных алгебраических уравнений с помощью формул Крамера.
	5. Решение системы линейных алгебраических уравнений матричным методом.

Тема 2. Дифференциальное исчисление функции одной переменной.

Лекция 3. Предел и производная функции. Дифференциал функции. Производные высших порядков.

Контрольный вопрос
1. Дайте определение производной функции в точке x_0 .
2. Назовите геометрический и механический смысл производной функции.
3. Производная суммы, произведения и частного двух функций.
4. Производные элементарных функций.
5. Производные сложных функций.
8. Определение дифференциала функции.

Лекция 4. Исследование функций с помощью производной. Задачи оптимизации.

Контрольный вопрос
1. Приведите общую схему исследования функции с помощью производной.
2. Дайте определения четной и нечетной функций.
3. Что называют асимптотами функции? Каковы правила их нахождения?
4. Как определить интервалы возрастания и убывания функции?
5. Достаточное условие экстремума функции
6. Как найти точки перегиба графика функции?

Тема 7. Интегральное исчисление

Лекция 5. Первообразная функции и неопределенный интеграл.

Конт	рольный	вопрос
10111	POMBILDIN	bonpoe

- 1. Понятие первообразной функции.
- 2. Понятие и свойства неопределенного интеграла.
- 3. Табличные интегралы.
- 4. Интегрирование методом замены переменной.
- 5. Метод интегрирования по частям.
- 6. Интегрирование рациональных функций.

Лекция 6. Определенный интеграл. Несобственный интеграл

Контрольный вопрос

- 1. Понятие и свойства определенного интеграла.
- 2. Формула Ньютона-Лейбница.
- 3. Геометрический смысл определенного интеграла.
- 4. Определение несобственного интеграла первого рода.
- 5. Определение несобственного интеграла второго рода.

Тема 4. Дифференциальные уравнения.

Лекция 7. Дифференциальные уравнения первого порядка с разделяющимися переменными. Однородные и линейные дифференциальные уравнения.

Контрольный вопрос

- 1. Определение дифференциального уравнения
- 2. Что называют порядком дифференциального уравнения?
- 3. Что называется решением дифференциального уравнения, общим и частным решением?
- 4. Сформулируйте задачу Коши для дифференциального уравнения первого порядка.
- 5. Дифференциальные уравнения с разделяющимися переменными.
- 6. Какие дифференциальные уравнения относятся к однородным?
- 7. Какие дифференциальные уравнения первого порядка называются линейными?

Лекция 8. Дифференциальные уравнения высших порядков.

Контрольный вопрос

- 1. Какое уравнение называется дифференциальным уравнением второго порядка?
- 2. Сформулируйте теорему про существование и единственность решения дифференциального уравнения второго порядка.
- 3. Какие дифференциальные уравнения второго порядка допускают понижения порядка?
- 4. Изложите способ решения для уравнений допускают понижения порядка.
- 5. Какое уравнение называется линейным дифференциальным уравнением второго порядка?
- 6. Какова структура общего решения ЛОДУ 2-го порядка.

Тема 5. Функции нескольких переменных.

Лекция 9. Функции двух переменных. Частные производные. Производная по направлению. Градиент. Полный дифференциал.

Контрольный вопрос

- 1. Определение функции двух переменных.
- 2. Частные производные функции нескольких переменных.
- 3. Полный дифференциал функции нескольких переменных.
- 4. Формула производной в данном направлении.
- 5. Понятие и формула градиента.

Лекция 10. Частные производные и дифференциалы высших порядков. Экстремум функции двух переменных. Метод наименьших квадратов

Контрольный вопрос

- 1. Частные производные высших порядков функции нескольких переменных.
- 2. Теорема о смешанных частных производных функции двух переменных.
- 3. Алгоритм вычисления экстремума функции двух переменных.
- 4. В чем заключается суть метода наименьших квадратов?
- 5. Как строится система нормальных уравнений для линейной функции?

Тема 6. Теория вероятности.

Лекция 11. Элементы комбинаторики. Случайные события. Классическое и статистическое определения вероятности. Основные теоремы теории вероятностей

Контрольный вопрос

- 1. Дайте определение события. Какие события называются достоверными, невозможными, случайными?
- 2. Приведите формулу и свойства классической вероятности.
- 3. Приведите основные формулы комбинаторики.
- 4. Дайте определение суммы событий.
- 5. Дайте определение условной вероятности. Приведите теорему умножения вероятностей зависимых событий.

Лекция 12. Дискретные случайные величины. Закон распределения, дискретной случайной величины. Числовые характеристики дискретной случайной величины

Контрольный вопрос

- 1. Дайте определение дискретной случайной величины.
- 2. Функция распределения случайной величины.
- 3. Как выглядит график функции распределения.
- 4. Что называют законом распределения дискретной случайной величины.
- 5. Назовите числовые характеристики дискретной случайной величины.

Лекция 13. Непрерывные случайные величины. Функция распределения вероятностей.

Плотность вероятностей

Контрольный вопрос

- 1. Дайте определение непрерывной случайной величины.
- 2. Что называют функцией распределения вероятностей.
- 3. Что такое плотность вероятностей, как она задается?
- 4. Назовите формулы числовых характеристик непрерывной случайной величины.
- 5. Основные законы распределения непрерывных случайных величин.

Тема 7. Элементы математическая статистика.

Лекция 15. Задачи математической статистики. Обработка статистических данных. Числовые характеристики и методы их вычисления.

Контрольный вопрос

- 1. Охарактеризуйте выборочный метод обработки результатов наблюдений.
- 2. Определение генеральной и выборочной совокупности.
- 3. Как строится вариационный ряд, интервальный вариационный ряд?
- 4. Что называется эмпирической функцией распределения?
- 5. Что такое полигон и гистограмма?

Лекция 16. Статистическая гипотеза. Критерии согласия

Контрольный вопрос

- 1. Назовите основной принцип статистической проверки гипотез.
- 2. Дайте определение ошибок первого рода.

- 3. Дайте определение ошибок второго рода.
- 4. Что называют статистическим критерием?
- 5. Назовите известные критерии согласия проверки статистических гипотез?

Лекция 17. Функциональна и статистическая зависимость. Уравнение линейной регрессии. Коэффициент корреляции

Контрольный вопрос

- 1. Какие случайные величины называются независимыми?
- 2. Применение метода наименьших квадратов для построения уравнения линейной регрессии.
- 3. Как определить коэффициент корреляции?
- 4. Что показывает коэффициент корреляции.
- 5. Алгоритм построения выборочных линейных уравнений регрессии.

Критерии оценивания:

Оценивание текущего тестирования осуществляется по номинальной шкале — за правильный ответ к каждому заданию выставляется один балл, за не правильный — ноль. Общая оценка каждого теста осуществляется в отношении количества правильных ответов к общему числу вопросов в тесте (выражается в процентах). Количество попыток прохождения теста и время на его прохождение — неограниченно. Тест считается пройденным (оценка «зачтено») при общей оценке 75%.

Самостоятельное решение задач и объяснение их решения

Тема 1. Элементы линейной алгебры

Практическое занятие 1. Матрицы. Действия с матрицами.

Задания

1.
$$A = \begin{pmatrix} 2 & -5 \\ -3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} -3 & 3 \\ -5 & 7 \end{pmatrix}$. Найти $A + B$, $A - 2B$, $A \cdot B$, $B \cdot A$.

2.
$$A = \begin{pmatrix} -3 & 8 \\ 1 & -9 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -4 & 3 \\ 0 & -6 & 5 \end{pmatrix}$. Найти $A + B$, $2B$, $A \cdot B$, $B \cdot A$.

3. Дано
$$A = \begin{pmatrix} \mathbf{i} & 1 & 2 & 3 \\ \mathbf{i} & 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} \mathbf{i} & 3 & 4 & 5 \\ \mathbf{i} & 6 & 0 & -2 \\ \mathbf{i} & 7 & 1 & 8 \end{pmatrix}$$
. Найти произведение AB и BA .

Практическое занятие 2. Определители, методы их вычисления. Ранг матрицы.

Задания

$$A = \begin{pmatrix} i & 1 & -2 & 0 \\ i & 3 & 5 & -7 \\ i & -4 & 1 & 2 \end{pmatrix}$$
 В случае, если ранг матрицы A не меньше 3_x, вычислить и

обратную матрицу.

5. Вычислить определители данных матриц, используя теорему Лапласа:

$$C = \begin{pmatrix} 2 & 6 & 3 \\ 1 & -1 & -2 \\ 0 & 4 & 7 \end{pmatrix} , D = \begin{pmatrix} -2 & 0 & 3 \\ 4 & 5 & -1 \\ 3 & 2 & -3 \end{pmatrix}.$$

|--|

Практическое занятие 3,4. Решение СЛАУ методом Крамера и матричным методом.

Задания	
1. Решить систему уравнений методами Крамера и матричным методом:	3x+y-z=10 -3x+3y+2z=8. 5x+2y+8z=-1
2. Решить систему уравнений методами Крамера и матричным методом:	$ \begin{array}{c} 3x + 2y + 6z = 1 \\ 2x - y + z = 2 \\ 3x + 2y + 2z = -2. \\ x - 2y + z = 1 \end{array} $
3. Решить систему уравнений методами Крамера и матричным методом:	x+2y+z=4 5x-5y+3z=1. 2x+7y-z=8

Тема 2. Дифференциальное исчисление функции одной переменной.

Практическое занятие 5. Предел функции. Непрерывность функции, точки разрыва

Задания	
$\lim x^2 + 3x$	
1. Вычислить предел $x \to -3$	
x^2+x-6	
$\lim \sqrt{1+3x^2}-2$	
2. Вычислить предел $x \to 1$	
2. Вычислить предел $\frac{x \to 1}{x^2 - x}$.	
$\lim_{x \to 0} 1 - 3x - 5x^3$	
3. Вычислить предел $\frac{x \to \infty}{}$.	
$\lim_{3. \text{ Вычислить предел } \frac{1-3x-5x^3}{x\to\infty}.$	
1:: 4 1	
4. Вычислить предел $x \to 0$.	
4. Вычислить предел $\frac{x \to 0}{3x^2}$.	
	$2x$, $x \leq 0$
5. Найти точки разрыва функции, если они существуют, построить график функции $y= $	$1-x^2$, $0 < x \le 2$.
	-3, x>2

Практическое занятие 6. Производная и дифференциал функции. Производные высших порядков.

Задания
1. Найти производную функции $y=3\sqrt[3]{x^2}+\frac{4}{x^2}+\frac{1}{2}x^2$.
2. Найти производную функции $y = (x+2) \cdot 2^x$.
3. Найти производную функции $y = \frac{x^2}{1 - x^2}$.
4. Найти производную сложной функции $y = e^{\cos 5x}$.
5. Найти производную второго порядка от функции: $y = \frac{1}{2} \ln^2 x$.
6. Найти производную третьего порядка от функции: $y = e^{-x^2}$.

Практическое занятие 7. Решение задач на нахождение интервалов возрастания и убывания, наибольшего и наименьшего значений функции; точек экстремума; определение областей выпуклости, вогнутости, точек перегиба; асимптот функции.

Задания

- 1. Найти экстремумы функции $y = x^4 2x + 10$, интервалы убывания, возрастания функции.
- 2. Найти интервалы выпуклости, вогнутости, точки перегиба для функции $y = \frac{x^4}{4} x^3$.
- 3. Найти асимптоты функции $y = \frac{x 4}{x^2}$.

Практическое занятие 8. Исследование функций с помощью производной, построение графика.

Задані v²—5

1. Исследовать функцию и построить ее график $y = \frac{x^2 - 5}{x - 3}$.

Тема 7. Интегральное исчисление

Практическое занятие 9. Неопределенный интеграл. Методы интегрирования по частям, замена переменной.

Задания

- 1. Используя таблицу, найти следующие интегралы: $\int x^5 dx$; $\int \sqrt{x} dx$; $\int \frac{1}{x^2+9} dx$; $\int \frac{1}{x} dx$.
- 2. Найти интегралы, используя подходящую подстановку: $\int e^{2x^2+5} \cdot x \, dx$, $\int (x^2+1)^5 2x \, dx$.
- 3. Вычислить интеграл используя формулу интегрирования по частям: $\int (x+1) \sin x \, dx$.
- 4. Вычислить интеграл используя формулу интегрирования по частям: $\int (x+1) \ln x \, dx$.

Практическое занятие 10. Интегрирование рациональных функций

Задания

- 1. Найти интеграл: $\int \frac{x-3}{x^2-5x+4} dx$.
- 2. Найти интеграл: $\int \frac{3x+1}{x^2-4x-2} dx$.

Практическое занятие 11. Определенный интеграл. Формула Ньютона-Лейбница.

Приложения определенного интеграла. Вычисление площадей плоских фигур.

Задания

- 1. Вычислить определенный интеграл: $\int_{0}^{1} x^{3} dx.$
- 2. Вычислить определенный интеграл: $\int_{0}^{1} x^{3} \cos x^{4} dx.$
- 3. Вычислить определенный интеграл: $\int_{0}^{2} \frac{dx}{\sqrt{x^{2} 6x + 9}}$
- 4. Вычислить определенный интеграл $\int_{0}^{\sqrt{2}} 3x^2 \cdot e^{x^3} dx.$
- 5. Вычислить определенный интеграл $\int_{1}^{e} (x+2) \cdot \ln x \, dx$.

Практическое занятие 12. Несобственные интегралы.

Задания

1. Исследовать сходимость интеграла $\int_{1}^{+\infty} e^{-x^2}$.

 2. Исследовать сходимость интеграла $\int_{1}^{+\infty} \frac{dx}{x^{10}}$.

 3. Исследовать сходимость интеграла $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$.

 4. Исследовать сходимость интеграла $\int_{1}^{2} \frac{dx}{x \ln x}$.

Тема 4. Дифференциальные уравнения.

Практическое занятие 13. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка с разделяющимися переменными. Задача Коши. линейные.

Задания

- 1. Найти общее решение дифференциального уравнения $y'\sqrt{1-x^2}=1+y^2$.
- 2. Найти общее решение дифференциального уравнения $y + \frac{\sin x}{\sin y} = 0$.
- 3. Найти общее решение дифференциального уравнения $y' = \frac{y^2}{x^2} + 4\frac{y}{x} + 2$.
- 4. Найти частное решение уравнения $y' = (y+1) \cdot ctgx$, удовлетворяющее условию $y(\frac{\pi}{2}) = 2$...

Практическое занятие 14. Однородные, линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли.

Задания

- 1. Найти общее решение дифференциального уравнения $y'+2y=e^{3x}$.
- 2. Найти общее решение дифференциального уравнения $y' + xy = -x^3$.
- 3. Найти общее решение дифференциального уравнения и частное решение $y' + 2xy = 2x e^{-x^2}$, если начальные данные $x_0 = 0$; $y_0 = 5$.
- 4. Решить уравнение Бернулли $y' + \frac{y}{x} = y^2 \ln x$.

Практическое занятие 15. Дифференциальные уравнения высших порядков. Уравнения, допускающие понижение порядка

Задания

- 1. Найти общее решение дифференциального уравнения $2 y y'' = (y')^2$.
- 2. Найти общее решение уравнения $y = \{\{y\} \land \{'\}\}$ over $\{1+x\}$
- 3. Найти общее решение дифференциального уравнения и частное решение $y^{''}+3y^{'}=0$, если начальные условия y(0)=0, $y^{'}(0)=3$.
- 4. Найти общее решение дифференциального уравнения $y'' = \frac{y}{x} + x$.

Практическое занятие 16. Линейные однородные и неоднородные ДУ второго порядка. Интегрирование ЛОДУ второго порядка с постоянными коэффициентами.

Задания

- 1. Найти общее решение дифференциального уравнения $y^{''}$ + 6 $y^{'}$ + 5 y = 0.
- 2. Найти общее решение дифференциального уравнения $y^{''}-5y^{'}+6y=0$ и частное решение, если начальные условия y(0)=1, $y^{'}(0)=4$.
- 3. Найти общее решение дифференциального уравнения y'' + 9 y = 18 x + 45.
- 4. Найти общее решение дифференциального уравнения $y'' 2y' + 10y = 37\cos 3x$.

Тема 5. Функции нескольких переменных.

Практическое занятие 17. Функции двух переменных. Частные производные. Полный дифференциал функции двух переменных.

Запацио

- 1. Найти частные производные первого и второго порядка $z = x^3 x y^2 + 3 x^2 + y^2 1$.
- 2. Найти полный дифференциал функции $z = 3e^{xy^2}$.
- 3. Вычислить производную функции z=4 x^2 y+24 $xy+y^2+32$ y-6 в точке M(1;-1) в направлении вектора $\vec{a}=(3;-4)$.
- 4. Вычислить градиент функции $z = 4 x^2 y + 24 xy + y^2 + 32 y 6$ в точке M(1;-1).

Практическое занятие 18. Экстремум функции двух переменных. Метод наименьших дратов.

квадратс	квадратов.									
	Задания									
1. Найти экстремум функции $z = \frac{3}{2}x^2 + 2xy - \frac{1}{2}y^2 - 5x - y + 2$.										
2. Резуль	2. Результаты измерений величин х и у представлены таблицей.									
x 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5										
у	12,5	14,5	16,0	18,5	20,0	20,5	22,0	25,5	28,5	30,0
Составит	Составить учанение пинейной зависимости у/х) используя метол наименьших кратратов. Построить запанные									

Составить уравнение линейной зависимости y(x), используя метод наименьших квадратов. Построить заданные точки и полученную прямую.

Тема 6. Теория вероятности.

Практическое занятие 19. Вычисление вероятности случайных событий. Основные теоремы теории вероятностей

Задания

- 1. В общежитии проживает 10% студентов университета. 75% студентов, проживающих в общежитии, увлекается спортом, среди них 46% юношей. Какова вероятность встретить в студенческом городке юношу, увлекающегося спортом и живущего в общежитии?
- 2. Пусть вероятность попадания в цель при одном выстреле равна 1/5. Производится 10 независимых выстрелов. а) Какова вероятность попадания в цель по меньшей мере дважды? б) Какова условная вероятность попадания в цель по меньшей мере дважды, если известно, что по крайней мере одно попадание произошло?
- 3. Вероятность некоторого изделия быть бракованным равна 0.005. Чему равна вероятность того, что среди 10000 наугад взятых изделий 40 бракованных?
- 4. На сборку попадают детали с 3 станков. Известно, что первый станок дает 0.3% брака, второй -0.2% и третий -0.4%. Найти вероятность попадания на сборку бракованной детали, если с первого станка поступило 1000 деталей, со второго -2000 деталей и с третьего -2500 деталей.
- 5. В страховой компании 500 начинающих и 2000 опытных водителей. В среднем 10 % начинающих и 2 % опытных водителей в течение года попадают в аварию. Один из водителей попал в аварию. Какова вероятность того, что это был опытный водитель?

Практическое занятие 20. Дискретные случайные величины. Закон распределения, дискретной случайной величины. Числовые характеристики дискретной случайной величины

	Задания									
1. Вычи	1. Вычислить математическое ожидание и дисперсию случайной дискретной величины, заданной законом									
распреде	еления									
X_i	3	4	5	6	7	8	9	10	11	12
p_{i}	0,04	0,05	0,12	0,16	0,24	0,18	0,1	0,05	0,04	0,02

- 2. В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить закон распределения случайной величины ξ числа стандартных деталей среди отобранных. Построить функцию распределения вероятностей и ее график. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение.
- 3. Баскетболист бросает мяч в корзину. Построить ряд распределения и функцию распределения числа попаданий мячом в корзину при двух бросках, если вероятность попадания равна 0,4. Построить функцию распределения вероятностей и ее график. Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение.

Практическое занятие 21. Непрерывные случайные величины. Функция распределения вероятностей. Плотность вероятностей

Задания

1. Дана функция распределения F(x) случайной величины X. Найти дисперсию D[X]. Ответ записать с двумя

знаками после запятой без округления.
$$F(x) = \begin{cases} \dot{\iota} \, 0 \, npux < 0, \\ \dot{\iota} \, \frac{1}{8} \, x^3 \, npu \, 0 \le x \le 2, \\ \dot{\iota} \, 1 \, npu \, x > 2. \end{cases}$$

2. Случайная величина ξ задана функцией плотности распределения вероятностей:

$$f(x) = \begin{cases} 0, & \& x \le 0; \\ \sin(x), & \& 0 < x \le \pi/2; \\ 0, & \& x > \pi/2. \end{cases}$$

Найти функцию распределения $F_{\xi}(x)$. Вычислить математическое ожидание, дисперсию, среднее кавадратическое отклонение случайной величины.

3. Задана плотность распределения некоторой случайной величины X. Найти параметр, a, математическое ожиданиеM[X] и вероятность попадания случайной величины на интервал $(\alpha, \beta) P[\alpha < X < \beta]$:

$$f(x) = \begin{cases} \dot{o}, x < 1, x > 4, \\ \dot{o}(x-1)/3, 1 < x < 2, \\ \dot{o}(x-4), 2 < x < 4, \end{cases}$$

где $\alpha = 2$, $\beta = 3$.

Практическое занятие 22. Законы распределения непрерывных случайных величин

Задания

1. Плотность вероятности равномерной непрерывной случайной величины X имеет вид:

$$f(x) = \begin{cases} 0.5 * B, x \in [0,2] \\ 0, x \notin [0,2] \end{cases}$$

Найти: $B, F(x), M(x), D(x), \sigma(x), P[X \in [0;1;2]]$.

2. Плотность вероятности показательной непрерывной случайной величины X имеет вид:

$$f(x) = \begin{cases} \lambda * e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Где $\lambda > 0$ — параметр данного распределения. Найти: F(x), M(x), D(x), $\sigma(x)$, $P[1 \le X \le 5]$.

3. Случайные ошибки измерения детали подчинены нормальному закону с параметром , $\sigma(x)$ = 20мм. Найти вероятность того, что измерение детали произведено с ошибкой, не превосходящей по модулю 25 мм.

Тема 7. Элементы математическая статистика.

Практическое занятие 23. Выборочный метод обработки статистических данных. Вычисление числовых характеристик статистического распределения.

	Задания									
По выбо	По выборочным данным, представленным в таблице									
Xi	80	84	88	92	96	100	104	108	114	116
n_i	2	4	9	12	27	22	15	5	3	1

- 1. Построить гистограмму и кумуляту.
- 2. Вычислить среднее выборочное $\overline{\chi}$.
- 3. Вычислить исправленную дисперсию s².
- 4. Вычислить исправленное среднее квадратическое отклонение *s*.
- 5. Вычислить центральные моменты μ , коэффициенты ассиметрии A и ексцесса E_x .
- 6. Вычислить коэффициент вариации V.

Практическое занятие 24. Проверка гипотез о нормальном распределении с использованием критерия согласия Пирсона.

	Задания									
1. По ві	1. По выборочным данным, представленным в таблице									
X_i	82	86	90	94	98	102	106	110	114	118
n_i	2	4	9	12	20	25	15	7	5	1

проверить гипотезу H_0 о нормальном распределении генеральной совокупности по данной выборке по критерию Пирсона:

Практическое занятие **25.** Составление уравнения парной линейной регрессии. Построение линии регрессии. Вычисление коэффициента корреляции

	Задания							
В результате г	В результате группировки данных статистического наблюдения над признаками Х и У получена корреляционная							
таблица. С цел	таблица. С целью изучения линейной связи между этими признаками требуется:							
\boldsymbol{y}_{i}	10	15	20	25	30			
X_i	10				30			
2	3	4						
5		10	9	3				
8		6	40	5				
11			4	8	3			
14				2	3			

а) найти их числовые показатели $\bar{\chi}$, \bar{y} , σ_{x} , σ_{y} ;

Критерии оценивания:

Оценивание каждой практической работы осуществляется по системе *зачтено* и *не зачтено*. В процессе оценивания учитываются отдельные критерии и их «весомость».

Критерии оценивания	Весомость, %
- выполнение всех пунктов задания	до 30
- качественное оформление практического задания	до 30
- точность и правильность выполнения практического задания	до 40

Оценка зачтено выставляется, если набрано не менее 75%.

Защита практических заданий не проводится.

2.3 Оценочные материалы для проведения промежуточной аттестации

Вид промежуточной аттестации: экзамен.

Условием допуска к промежуточной аттестации является получение по всем видам текущей аттестации (экспресс-опросы, самостоятельное решение задач и объяснение их решения) оценки *зачтено*.

Экзамен проводится в первом семестре изучения дисциплины.

Технология проведения экзамена — устный экзамен путем ответа на один вопрос теоретической части дисциплины и решение двух задач по темам соответствующего семестра.

Вопросы, выносимые на экзамен

- 1. Определители, их вычисление и свойства.
- 2. Решение системы линейных алгебраических уравнений с помощью формул Крамера
- 3. Матрицы. Виды матриц. Сложение, умножение матриц. Элементарные преобразования матриц. Ранг матрицы.
- 4. Обратная матрица. Алгоритм нахождения обратной матрицы. Решение систем линейных алгебраических уравнений матричным методом.
- 5. Предел функции. Бесконечно большие и бесконечно малые величины.
- 6. Непрерывность функций. Точки разрыва их классификация.

б) найти выборочный коэффициент корреляции в r_{g} и оценить его надежность с уровнем значимости $\alpha = 0.01$;

в) найти уравнения прямых регрессий Y на X и X на Y и изобразить в системе координат графики \overline{y}_x и \overline{x}_y .

- 7. Производная, ее геометрический и механический смыл.
- 8. Производная суммы, произведения и частного двух функций.
- 9. Производные элементарных функций.
- 10. Дифференциал и его свойства.
- 11. Производные и дифференциалы высших порядков.
- 12. Исследование графиков функций. Нахождение экстремумов функций и их асимптот. Выпуклость и вогнутость кривых. Точки перегиба.
- 13. Понятие первообразной функции и неопределенного интеграла.
- 14. Интегрирование методом замены переменной.
- 15. Метод интегрирования по частям.
- 16. Интегрирование рациональных функций. Метод неопределенных коэффициентов.
- 17. Понятие и свойства определенного интеграла. Формула Ньютона-Лейбница.
- 18. Замена переменной в определенном интеграле.
- 19. Несобственные интегралы. Интегралы с бесконечными границами интегрирования. Интегралы от разрывных функций.
- 20. Решение дифференциальных уравнений 1-го порядка с разделяющимися переменными.
- 21. Однородные дифференциальные уравнения 1-го порядка.
- 22. Линейные дифференциальные уравнения 1-го порядка, уравнения Бернулли
- 23. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.
- 24. Дифференциальные уравнения 2 порядка, допускающие понижение порядка.
- 25. Линейные дифференциальные уравнения 2-го порядка с постоянными коэффициентами и специальной правой частью.

Критерии оценивания промежуточного контроля - экзамен

На экзамене результирующая оценка выставляется по четырехбалльной системе (неудовлетворительно, удовлетворительно, хорошо, отлично).

Критерии оценивания:

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа.

Показатели и шкала оценивания:

Шкала оценивания	Показатели
Отлично	 ставится при полном ответе на вопроса и верном решении обеих задач, при этом: обучающийся полно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка
Хорошо	 выставляется при неполном ответе на вопрос или отсутствии полного решения одной задачи и при этом: обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для отметки «5», но допускает 1-2 ошибки и 1-2 недочета в последовательности и языковом оформлении излагаемого
Удовлетворительно	 получает обучающийся при: 1) неполном ответе на вопрос и неполном решении обеих задач; 2) неполном ответе на вопрос и неверном решении одной задачи и верном другой; 3) неверном ответе на вопрос, неполном решении одной задачи и верном решении другой; обучающийся обнаруживает знание и понимание основных положений данной темы, но:

	-	излагает материал неполно и допускает неточности в определении понятий или
		формулировке правил;
	-	не умеет достаточно глубоко и доказательно обосновать свои суждения и привести
		свои примеры;
	-	излагает материал непоследовательно и допускает ошибки в языковом оформлении
		излагаемого
	-	выставляется при неверном ответе на вопрос и неверном решении задач, при этом:
Неудовлетворительно	-	обучающийся обнаруживает незнание большей части соответствующего вопроса,
		допускает ошибки в формулировке определений и правил,
	-	искажающие их смысл, беспорядочно и неуверенно излагает материал.

Вид промежуточной аттестации: зачет.

Условием допуска к промежуточной аттестации является выполнение и защита (получение отметки «зачтено») по всем работам и самостоятельно решенных задач, прохождение всех тестов текущей аттестации с результатом не менее 75% по каждому.

Зачет проводится в втором семестре изучения дисциплины.

Технология проведения зачета — прохождение комплексного теста по всем изученным темам. Тестовые задания комплектуются из вопросов текущего контроля, в равной степени охватывающих весь материал. Время прохождения теста 45 минут.

Вопросы, выносимые на зачет:

- 1. Понятие о функции нескольких переменных.
- 2. Частные производные функции нескольких переменных.
- 3. Производная по направлению. Градиент.
- 4. Экстремум функции двух переменных.
- 5. Основные понятия и формулы комбинаторики.
- 6. Предмет теории вероятностей. Основные понятия. Классификация событий.
- 7. Классическое и статистическое определение вероятности.
- 8. Пересечение множеств (произведение событий). Теорема умножения вероятностей.
- 9. Объединение множеств (сумма событий). Теорема сложения вероятностей, ее следствия.
- 10. Формула полной вероятности. Формула Байеса.
- 11. Повторение независимых испытаний. Формула Бернулли.
- 12. Асимптотические приближения формулы Бернулли (локальная, интегральная теоремы Лапласа, формула Пуассона).
- 13. Случайные величины, их виды и способы задания.
- 14. Функция распределения случайной величины и ее свойства.
- 15. Дифференциальная функция распределения (плотность) непрерывной случайной величины и ее свойства.
- 16. Математическое ожидание случайной величины и его свойства.
- 17. Дисперсия случайной величины и ее свойства.
- 18. Равномерный закон распределения непрерывной случайной величины.
- 19. Показательное распределение непрерывной случайной величины.
- 20. Нормальный закон распределения. Кривая Гаусса. Правило трех сигм.
- 21. Понятие статистического распределения. Методика построения вариационного ряда.
- 22. Числовые характеристики статистического распределения.
- 23. Понятие о статистических гипотезах. Критерий согласия Пирсона.
- 24. Понятие корреляционной зависимости. Основные задачи корреляционного анализа.
- 25. Определение параметров уравнений прямолинейного тренда МНК. Коэффициент корреляции.

Критерии оценивания:

Оценивание осуществляется по двухбалльной системе.

Оценивание промежуточного тестирования осуществляется по номинальной шкале — за правильный ответ к каждому заданию выставляется один балл, за не правильный — ноль. Общая оценка каждого теста осуществляется в отношении количества правильных ответов к общему числу вопросов в тесте (выражается в процентах).

В процентном соотношении оценки (по двухбалльной системе) выставляются в следующих диапазонах:

«не зачтено» - менее 75%; «зачтено» - 75% - 100%.