#### ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

# Федеральное государственное бюджетное образовательное учреждение высшего образования «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ

# ЕГЧЕНСКИЙ ГОСУДАГСТВЕННЫЙ МОГСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» СУДОМЕХАНИЧЕСКИЙ ТЕХНИКУМ

## РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОП.01 Математические методы решения прикладных профессиональных задач

программы подготовки специалистов среднего звена по специальности

20.02.01 Экологическая безопасность природных комплексов

Форма обучения: очная

Рабочая программа дисциплины «Математические методы решения прикладных профессиональных задач» разработана на основе требований Федерального государственного образовательного стандарта среднего профессионального образования по специальности 20.02.01 Экологическая безопасность природных комплексов

Разработчик:

Преподаватель высшей категории

Т.В. Самойлова

Программа утверждена на заседании цикловой комиссии физикоматематических дисциплин

Протокол № 2 от «15» 10.2025 г.

Программа утверждена на заседании учебно-методического совета судомеханического техникума ФГБОУ ВО «КГМТУ» Протокол № 2 от «22» 10.2025 г.

#### СОДЕРЖАНИЕ

- 1. ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 3. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ
- 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

## 1 ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОП.01 МАТЕМАТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ПРИКЛАДНЫХ ПРОФЕССИОНАЛЬНЫХ ЗАДАЧ

#### 1.1 Место дисциплины в структуре основной образовательной программы:

Учебная дисциплина «Математические методы решения прикладных профессиональных задач» является обязательной частью общепрофессионального цикла основной образовательной программы в соответствии с ФГОС СПО по специальности 20.02.01 Экологическая безопасность природных комплексов.

Особое значение дисциплина имеет при формировании и развитии ОК 01, ОК 02, ОК 03, ОК 04, ОК 05, ОК 07.

#### 1.2 Цель и планируемые результаты освоения дисциплины:

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

| Код                                                                                      | Умения                                                              | Знания                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| пк, ок                                                                                   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                              |
| OK 01.<br>OK 02.<br>OK 03.<br>OK 04.<br>OK 05.<br>OK 06.<br>OK 07.<br>ПК 1.1.<br>ПК 1.4. | – решать прикладные задачи в области профессиональной деятельности. | <ul> <li>значение математики в профессиональной деятельности и при освоении ОПОП;</li> <li>основные математические методы решения прикладных задач в области профессиональной деятельности;</li> <li>основные понятия и методы математического анализа, дискретной математики, теории вероятностей и математической статистики;</li> <li>основы интегрального и дифференциального</li> </ul> |
| ПК 2.1.                                                                                  |                                                                     | исчисления.                                                                                                                                                                                                                                                                                                                                                                                  |

#### 2 СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

#### 2.1 Объем учебной дисциплины и виды учебной работы

| Вид учебной работы                                          | Объем в часах |  |  |  |
|-------------------------------------------------------------|---------------|--|--|--|
| Объем образовательной программы учебной дисциплины          | 54            |  |  |  |
| в том числе:                                                |               |  |  |  |
| теоретическое обучение                                      | 18            |  |  |  |
| практические занятия                                        | 30            |  |  |  |
| Самостоятельная работа                                      | 6             |  |  |  |
| Промежуточная аттестация в форме дифференцированного зачёта |               |  |  |  |

#### 2.2 Тематический план и содержание учебной дисциплины

| Наименование<br>разделов и тем | Содержание учебного материала и формы организации деятельности<br>обучающихся                                                                | Объем, акад. ч | Коды<br>компетенций,<br>формированию<br>которых<br>способствует<br>элемент<br>программы |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------|
| Введение                       | Содержание учебного материала:                                                                                                               | 4              | OK 01, OK 02,                                                                           |
|                                | Роль математики в современном мире. Основные этапы становления                                                                               |                | ОК 03                                                                                   |
|                                | математики.                                                                                                                                  |                |                                                                                         |
|                                | кий анализ и основы дискретной математики                                                                                                    | 17             |                                                                                         |
| Тема 1.1                       | Содержание учебного материала                                                                                                                | 8              | OK 01, OK 02,                                                                           |
| Дифференциальное и             | Функции одной переменной. Пределы. Непрерывность функций.                                                                                    |                | ОК 04, ОК 05,                                                                           |
| интегральное                   | Исследование функций на непрерывность. Производная. Неопределенный                                                                           |                | ОК 06, ОК 07                                                                            |
| исчисление                     | интеграл. Определенный интеграл.                                                                                                             |                | ПК 1.1, 1.4                                                                             |
|                                | В том числе, практических занятий                                                                                                            | 6              | ПК 2.1                                                                                  |
|                                | <b>Практическое занятие № 1.</b> Вычисление пределов функций с использованием первого и второго замечательных пределов.                      | 2              |                                                                                         |
|                                | <b>Практическое занятие № 2.</b> Нахождение производных по алгоритму.                                                                        | 2              |                                                                                         |
|                                | Вычисление производной сложной функции. Нахождение частных производных.                                                                      | 2              |                                                                                         |
|                                | <b>Практическое занятие № 3.</b> Интегрирование простейших функций. Вычисление простейших определенных интегралов. Решение прикладных задач. | 2              |                                                                                         |
| Тема 1.2.                      | Содержание учебного материала                                                                                                                | 5              | OK 01, OK 02,                                                                           |
| Обыкновенные                   | Обыкновенные дифференциальные уравнения. Дифференциальные                                                                                    |                | OK 04, OK 05,                                                                           |
| дифференциальные               | уравнения в частных производных. Ряды. Решение дифференциальных                                                                              |                | OK 06, OK 07                                                                            |
| уравнения.                     | уравнений с разделяющимися переменными; однородных                                                                                           |                | ПК 1.1, 1.4                                                                             |
| Дифференциальные               | дифференциальных уравнений первого порядка; линейных                                                                                         |                | ПК 2.1                                                                                  |
| уравнения в частных            | дифференциальных уравнений первого порядка; линейных однородных                                                                              |                |                                                                                         |

| производных            | уравнений второго порядка с постоянными коэффициентами. Решение         |    |               |
|------------------------|-------------------------------------------------------------------------|----|---------------|
|                        | прикладных задач.                                                       |    |               |
|                        | В том числе, практических занятий                                       | 4  |               |
|                        | Практическое занятие № 4. Решение простейших дифференциальных и         | 2  |               |
|                        | линейных уравнений относительно частных производных.                    |    |               |
|                        | Практическое занятие № 5. Определение сходимости рядов по признаку      | 2  |               |
|                        | Даламбера. Определение сходимости знакопеременных рядов. Разложение     |    |               |
|                        | функций в ряд Маклорена.                                                |    |               |
| Тема 1.3. Множества    | Содержание учебного материала                                           | 3  | OK 01, OK 02, |
| и отношения.           | Элементы и множества. Задание множеств. Операции над множествами.       |    | OK 04, OK 05, |
| Свойства               | Свойства операций над множествами. Отношения. Свойства отношений.       |    | ОК 06, ОК 07  |
| отношений.             | Графы. Основные определения. Элементы графов. Виды графов и операции    |    | ПК 1.1, 1.4   |
| Операции над           | над ними.                                                               |    | ПК 2.1        |
| множествами.           |                                                                         |    |               |
| Основные понятия       |                                                                         |    |               |
| теории графов.         |                                                                         |    |               |
|                        | ота при изучении раздела 1                                              |    |               |
| 1 1                    | ботка конспектов занятий, учебной литературы (по вопросам к параграфам, | 1  |               |
| •                      | й, составленным преподавателем);                                        |    |               |
| -                      | ким занятиям с использованием методических рекомендаций преподавателя,  |    |               |
|                        | хих занятий, отчетов и подготовка к их защите;                          |    |               |
| составление теста;     |                                                                         |    |               |
| нахождение производны  |                                                                         |    |               |
|                        | сле профессиональной направленности;                                    |    |               |
|                        | нных интегралов различными методами;                                    |    |               |
| вычисление определенн  |                                                                         |    |               |
| решение обыкновенных   |                                                                         |    |               |
| решение задачи професс |                                                                         |    |               |
| исследование числовых  |                                                                         |    |               |
| вычисление определенн  |                                                                         |    |               |
| прямоугольников и тра  |                                                                         |    |               |
| _                      | ии вероятностей и математической статистики. Основные численные         | 14 |               |
| методы                 |                                                                         |    |               |

| Тема         2.1.         Теория множеств         Содержание учебного материала           Понятие события и вероятности события. Достоверные невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей. Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения случайной величины.           В том числе, практических занятий           Практическое занятие № 6. Решение простейших задач на определение |                                                                                                                                                                                                                                                                                                                               | 2 2 | OK 01, OK 02,<br>OK 04, OK 05,<br>OK 06, OK 07<br>ПК 1.1, 1.4<br>ПК 2.1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | вероятности с использованием теоремы сложения вероятностей. Построение закона распределения дискретной случайной величины.                                                                                                                                                                                                    |     |                                                                         |
| Тема 2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Содержание учебного материала                                                                                                                                                                                                                                                                                                 | 3   | ОК 01, ОК 02,                                                           |
| Математическое ожидание и дисперсия случайной величины                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Математическое ожидание дискретной случайной величины. Дисперсия случайной величины. Среднее квадратичное отклонение случайной величины                                                                                                                                                                                       |     | OK 04, OK 05,<br>OK 06, OK 07<br>ПК 1.1, 1.4<br>ПК 2.1                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В том числе, практических занятий                                                                                                                                                                                                                                                                                             | 2   |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Практическое занятие № 7. Нахождение математического ожидания, дисперсии и среднего квадратичного отклонения дискретной случайной величины заданной законом распределения.                                                                                                                                                    | 2   |                                                                         |
| Тема 2.3. Численное                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Содержание учебного материала                                                                                                                                                                                                                                                                                                 | 6   | ОК 01, ОК 02,                                                           |
| интегрирование,<br>дифференцирование,<br>решение<br>обыкновенных<br>дифференциальных<br>уравнений                                                                                                                                                                                                                                                                                                                                                                                                        | Формулы прямоугольников. Формула трапеций. Формула Симпсона. Абсолютная погрешность при численном интегрировании. Численное дифференцирование. Формулы приближенного дифференцирования, основанные на интерполяционных формулах Ньютона. Погрешность в определении производной. Построение интегральной кривой. Метод Эйлера. |     | OK 04, OK 05,<br>OK 06, OK 07<br>ПК 1.1, 1.4<br>ПК 2.1                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | В том числе, практических занятий                                                                                                                                                                                                                                                                                             | 4   |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Практическое занятие № 8. Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешности                                                                                                                                                                                                  | 2   |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Практическое занятие № 9. Нахождение производных функции в точке х по заданной таблично функции у = f (х) методом численного дифференцирования. Нахождение значения функции с использованием метода Эйлера.                                                                                                                   | 2   |                                                                         |

| Самостоятельная раб               | ота при изучении раздела 2                                              | 2 |                             |  |
|-----------------------------------|-------------------------------------------------------------------------|---|-----------------------------|--|
| систематическая прораб            |                                                                         |   |                             |  |
| главам учебных пособи             |                                                                         |   |                             |  |
| подготовка к практичес            | ким занятиям с использованием методических рекомендаций преподавателя,  |   |                             |  |
| оформление практичесн             | ких занятий, отчетов и подготовка к их защите;                          |   |                             |  |
| составление теста;                |                                                                         |   |                             |  |
| составление и решен               | ие задачи профессиональной направленности на составление закона         |   |                             |  |
| распределения дискрет             | ной случайной величины;                                                 |   |                             |  |
| решение задачи про                | фессиональной направленности о непрерывной случайной величине,          |   |                             |  |
| распределенной по норг            | мальному закону;                                                        |   |                             |  |
| _ <del>-</del>                    | стическую обработку результатов исследования (вычисление числовых       |   |                             |  |
| характеристик выборки             | ,                                                                       |   |                             |  |
|                                   | инейной алгебры и аналитической геометрии                               | 9 |                             |  |
| Тема 3.1. Матрицы,                | Содержание учебного материала                                           | 5 | OK 01, OK 02,               |  |
| определители.                     | Матрицы, операции над ними. Определители матриц, их вычисление.         |   | OK 04, OK 05,               |  |
| Решение систем                    | Обратная матрица. Системы линейных уравнений с переменными. Решение     |   | ОК 06, ОК 07<br>ПК 1.1, 1.4 |  |
| линейных                          | инейных систем линейных уравнений матричным и другими методами. Решение |   |                             |  |
| уравнений.                        | прикладных задач.                                                       |   | ПК 2.1                      |  |
| В том числе, практических занятий |                                                                         |   |                             |  |
|                                   | Практическое занятие № 10. Операции над матрицами и определителями.     | 2 |                             |  |
|                                   | Практическое занятие № 11. Решение систем линейных уравнений            | 2 |                             |  |
|                                   | матричным и другими методами.                                           |   |                             |  |
| Тема 3.2. Векторы.                | Содержание учебного материала                                           | 3 | OK 01, OK 02,               |  |
| Уравнение прямой.                 | Уравнение прямой, проходящей через данную точку с заданным              |   | OK 04, OK 05,               |  |
| Системы линейных                  | нормальным вектором, общее уравнение прямой. Уравнение прямой с         |   | OK 06, OK 07                |  |
| неравенств с двумя                | угловым коэффициентом и начальной ординатой. Пересечение двух           |   | ПК 1.1, 1.4                 |  |
| переменными                       | прямых. Параллельность прямых. Линейные неравенства с двумя             |   | ПК 2.1                      |  |
|                                   | переменными. Системы линейных неравенств с двумя переменными.           |   |                             |  |
|                                   | Область решения систем линейных неравенств с двумя переменными, ее      |   |                             |  |
|                                   | вершины. Решение систем линейных неравенств с двумя переменными.        |   |                             |  |
|                                   | В том числе, практических занятий                                       | 2 |                             |  |
|                                   | Практическое занятие № 12 Операции над векторами. Уравнение прямой      | 2 |                             |  |
|                                   | на плоскости. Решение систем линейных неравенств с двумя переменными.   |   |                             |  |

| Самостоятельная рабо                                                                                                      | ота при изучении раздела 3                                                                   | 1             |               |  |  |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|---------------|--|--|
|                                                                                                                           | систематическая проработка конспектов занятий, учебной литературы (по вопросам к параграфам, |               |               |  |  |
|                                                                                                                           | й, составленным преподавателем);                                                             |               |               |  |  |
| 1                                                                                                                         | ким занятиям с использованием методических рекомендаций преподавателя,                       |               |               |  |  |
|                                                                                                                           | их занятий, отчетов и подготовка к их защите;                                                |               |               |  |  |
| действия над матрицами                                                                                                    |                                                                                              |               |               |  |  |
| вычисление определите                                                                                                     |                                                                                              |               |               |  |  |
| нахождение матрицы, о                                                                                                     | братной данной;                                                                              |               |               |  |  |
| составление системы ли                                                                                                    | инейных уравнений и её решение методами Крамера, Гаусса, а также                             |               |               |  |  |
| матричным способом;                                                                                                       |                                                                                              |               |               |  |  |
| составление уравнений                                                                                                     | прямой по заданным условиям;                                                                 |               |               |  |  |
| действия над векторами                                                                                                    |                                                                                              |               |               |  |  |
| нахождение точки перес                                                                                                    | сечения прямых, вычисление угла между прямыми на плоскости.                                  |               |               |  |  |
| Раздел 4. Линейное про                                                                                                    |                                                                                              | 10            |               |  |  |
| Тема 4.1. Понятие и                                                                                                       | Содержание учебного материала                                                                | 3             | OK 01, OK 02, |  |  |
| сущность линейного                                                                                                        | Понятие и сущность линейного программирования. Задачи линейного                              |               | OK 04, OK 05, |  |  |
| программирования.                                                                                                         | программирования. План, целевая функция, система ограничений задач                           |               | ОК 06, ОК 07  |  |  |
| Моделирование                                                                                                             |                                                                                              | ПК 1.1, 1.4   |               |  |  |
| задач линейного                                                                                                           |                                                                                              |               |               |  |  |
| программирования.                                                                                                         | оптимальных технологий, транспортная задача и др.). Алгоритм                                 |               |               |  |  |
| Решение простейших                                                                                                        | геометрического метода решения задач линейного программирования.                             |               |               |  |  |
| задач линейного                                                                                                           | Различные случаи решения (единственный оптимальный план, бесконечное                         |               |               |  |  |
| программирования                                                                                                          | множество оптимальных планов, отсутствие оптимального плана). Решение                        |               |               |  |  |
| геометрическим                                                                                                            | задач линейного программирования геометрическим методом.                                     |               |               |  |  |
| методом         В том числе, практических занятий           Практическое занятие № 13. Решение простейших задач линейного |                                                                                              | 2             |               |  |  |
|                                                                                                                           | 2                                                                                            |               |               |  |  |
|                                                                                                                           | программирования геометрическим методом.                                                     |               |               |  |  |
| Тема 4.2.                                                                                                                 | Содержание учебного материала                                                                | 5             | OK 01, OK 02, |  |  |
| Автоматизированное                                                                                                        |                                                                                              | ОК 04, ОК 05, |               |  |  |
| решение задач                                                                                                             | структура, приемы работы. Вычисления. Функции. Матрицы, операции над                         |               | ОК 06, ОК 07  |  |  |
| линейной алгебры и                                                                                                        | ними. Системы линейных уравнений. Задачи линейного программирования.                         |               | ПК 1.1, 1.4   |  |  |
| линейного                                                                                                                 |                                                                                              | ПК 2.1        |               |  |  |

| программирования       | В том числе, практических занятий                                       | 4  |  |
|------------------------|-------------------------------------------------------------------------|----|--|
| _                      | Практическое занятие № 14. Вычисления, задание функций и нахождение     | 2  |  |
|                        | их значений в точке.                                                    |    |  |
|                        | Практическое занятие № 15. Операции над матрицами, решение систем       | 2  |  |
|                        | линейных уравнений. Решение задач линейного программирования.           |    |  |
|                        | ота при изучении раздела 4                                              | 2  |  |
| систематическая прораб | ботка конспектов занятий, учебной литературы (по вопросам к параграфам, |    |  |
| главам учебных пособи  | й, составленным преподавателем);                                        |    |  |
|                        | ким занятиям с использованием методических рекомендаций преподавателя,  |    |  |
| оформление практическ  | сих занятий, отчетов и подготовка к их защите;                          |    |  |
|                        | еской модели задачи линейного программирования;                         |    |  |
| составление системы    | пинейных неравенств с двумя переменными и её решение графическим        |    |  |
| методом;               |                                                                         |    |  |
| составление алгоритма  |                                                                         |    |  |
| решение задачи линейн  |                                                                         |    |  |
| решение задачи линейн  | ого программирования профессиональной направленности графическим        |    |  |
| методом.               |                                                                         |    |  |
| Всего                  |                                                                         | 54 |  |

#### 3 УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

### 3.1 Для реализации программы учебной дисциплины должны быть предусмотрены следующие специальные помещения:

Кабинет «Математики», оснащенный оборудованием: посадочные места по количеству обучающихся, рабочее место преподавателя, доска классная, таблицы и плакаты, комплект учебно-наглядных пособий.

#### 3.2 Информационное обеспечение реализации программы

Для реализации программы библиотечный фонд образовательной организации имеет печатные и (или) электронные образовательные и информационные ресурсы для использования в образовательном процессе.

- 1. Баврин, И. И. Математика : учебник и практикум для среднего профессионального образования / И. И. Баврин. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 616 с. (Профессиональное образование). ISBN 978-5-534-15118-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/470026
- 2. Богомолов, Н. В. Математика : учебник для среднего профессионального образования / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 401 с. (Профессиональное образование). ISBN 978-5-534-07878-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/469433
- 3. Кремер, Н. Ш. Математика для колледжей : учебное пособие для среднего профессионального образования / Н. Ш. Кремер, О. Г. Константинова, М. Н. Фридман ; под редакцией Н. Ш. Кремера. 10-е изд., перераб. и доп. Москва : Издательство Юрайт, 2021. 346 с. (Профессиональное образование). ISBN 978-5-534-05640-2. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://www.urait.ru/bcode/469282
- 4. Седых, И. Ю. Математика : учебник и практикум для среднего профессионального образования / И. Ю. Седых, Ю. Б. Гребенщиков, А. Ю. Шевелев. Москва : Издательство Юрайт, 2023. 443 с. (Профессиональное образование). ISBN 978-5-9916-5914-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/511991

#### 4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

| Результаты обучения                                                                                                                                                                                                                                                                                                                                                | Критерии оценки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Методы оценки                                                                                                                    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| 1                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                                                                |  |
| Перечень умений, осваи                                                                                                                                                                                                                                                                                                                                             | ваемых в рамках дисциплины                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |  |
| решать прикладные задачи в области профессиональной деятельности.                                                                                                                                                                                                                                                                                                  | <ul> <li>вычислять матричным и другими методами задачи профессиональной направленности (например, расход корма, расход удобрений, количество выращенной рыбы и т. д.);</li> <li>решать графическим методом задачу линейного программирования профессиональной направленности (например, расход корма, расход удобрений, количество выращенной рыбы и т. д.);</li> <li>решать задачу профессиональной направленности с помощью дифференциального уравнения (например, моделирование и исследование динамики численности популяции рыб при различном</li> </ul> | Текущий контроль в форме устного и письменного опроса, тестирования, контрольной работы; выполнение практических занятий. Зачет. |  |
|                                                                                                                                                                                                                                                                                                                                                                    | планировании вылова)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                  |  |
| Перечень знаний, осваи                                                                                                                                                                                                                                                                                                                                             | ваемых в рамках дисциплины                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                  |  |
| - значения математики в профессиональной деятельности и при освоении ОПОП; - основных математических методов решения прикладных задач в области профессиональной деятельности; - основных понятий и методов математического анализа, дискретной математики, теории вероятностей и математической статистики; - основ интегрального и дифференциального исчисления. | <ul> <li>роль математики в профессиональной деятельности ихтиолога и рыбовода;</li> <li>основные математические методы решения прикладных задач в области профессиональной деятельности;</li> <li>понятия числовой последовательности, числовой функции, их пределов, числового ряда и последовательности его частичных сумм, непрерывности функции в точке и на промежутке, случайного события и его вероятности;</li> <li>способы задания числовой последовательности, числовой функции, основные свойства</li> </ul>                                       | Оценка результатов выполнения практических занятий; контрольной работы. Зачет                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                    | последовательностей и функций;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                    | — основные признаки                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                  |  |

исследования числовых знакоположительных рядов на сходимость, теоремы о вероятности суммы и произведения событий; различие понятия точек разрыва функции первого и второго рода; основные операции над множествами, формулу полной вероятности события, понятие математического ожидания дискретной случайной величины, его свойства, понятие дисперсии и среднего квадратического отклонения дискретной случайной величины, основные понятия математической статистики, основные способы графической интерпретации выборки, числовые характеристики выборки; примеры применения формулы Бернулли для вычисления вероятности, операций над дискретными случайными величинами; —понятия производной и первообразной функции, неопределенного и определенного интегралов; геометрический и механический смысл производной функции и определенного интеграла; метод исследования функции с помощью производной первого и второго порядков, метод вычисления наибольшего (наименьшего) значения функции на данном отрезке, алгоритм полного исследования функции; методы вычисления площадей плоских фигур и объемов тел вращения с помощью определенных

интегралов.

#### ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

## Федеральное государственное бюджетное образовательное учреждение высшего образования

# «КЕРЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ МОРСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ» СУДОМЕХАНИЧЕСКИЙ ТЕХНИКУМ

### Приложение к рабочей программе дисциплины

ОП.01 МАТЕМАТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ПРИКЛАДНЫХ ПРОФЕССИОНАЛЬНЫХ ЗАДАЧ

#### ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

специальность 20.02.01 Экологическая безопасность природных комплексов

#### 1 Назначение фонда оценочных средств (ФОС) по дисциплине

 $\Phi$ OC по учебной дисциплине — это совокупность контрольных материалов, предназначенных для измерения уровня достижения обучающимся установленных результатов обучения.  $\Phi$ OC используется при проведении текущего контроля успеваемости и промежуточной аттестации обучающихся.

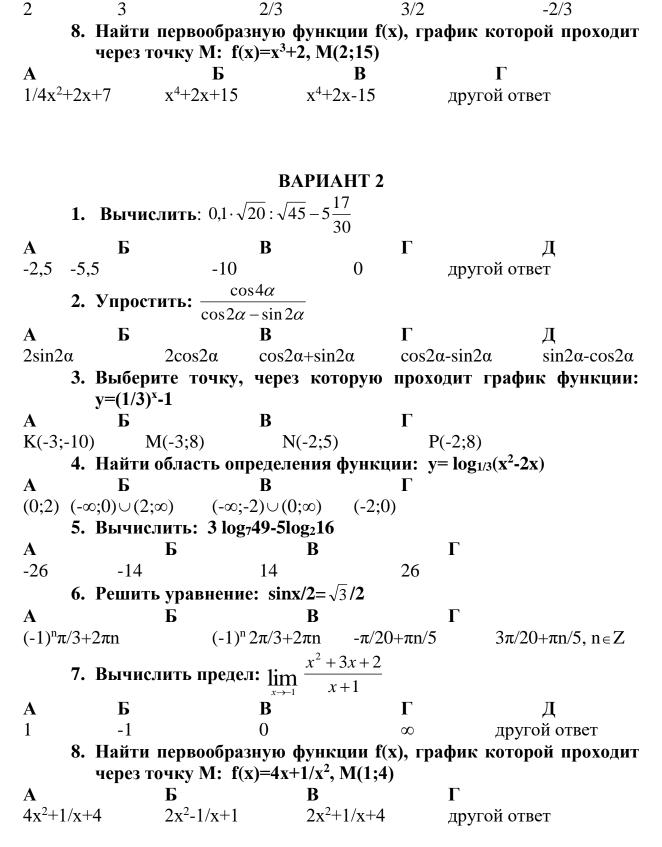
Задачи ФОС:

- управление процессом приобретения обучающимися необходимых знаний, умений;
- оценка достижений обучающихся в процессе изучения дисциплины с выделением положительных/отрицательных результатов и планирование предупреждающих/ корректирующих мероприятий;
  - самоподготовка и самоконтроль обучающихся в процессе обучения.

#### 2 Структура ФОС и применяемые методы оценки полученных знаний

Контроль и оценка результатов освоения дисциплины осуществляется преподавателем в процессе проведения практических занятий, устных опросов, текущего тематического тестирования, а также выполнения обучающимися домашних заданий

Материал считается усвоенным:


- с оценкой **«отлично»**, если курсант безошибочно выполняет 90-100% заданий работы;
- с оценкой **«хорошо»**, если в работе выполнено правильно от 70% заданий и выше с незначительными ошибками;
- с оценкой **«удовлетворительно»**, если решено правильно от 50~% до 69% заданий

#### Применяемые методы оценки полученных знаний по разделам дисциплины

| Тема            | Экспресс прос на лекциях по текущей теме (экспресстестирование) | Математ<br>ический<br>диктант | Письменная работа по теме | Итоговый<br>тест | Промежуточная<br>аттестация |
|-----------------|-----------------------------------------------------------------|-------------------------------|---------------------------|------------------|-----------------------------|
| Раздел 1.       | <u> </u><br>Математическиї                                      | <u> </u><br>и́ анализ и (     | <br>основы дискре         | <br>гной матем:  | <u> </u><br>атики           |
| Тема 1.1        | +                                                               | +                             | +                         | +                | Диф. зачет                  |
| Тема 1.2        | +                                                               |                               | +                         | +                | Диф. зачет                  |
| Тема 1.3        | +                                                               |                               | +                         | +                | Диф. зачет                  |
| Раздел 2. Основ | ы теории вероят                                                 |                               |                           | статистикі       | и. Основные                 |
| Taxa 2.1        |                                                                 | исленные <b>м</b>             |                           | Ι .              | П1                          |
| Тема 2.1        | +                                                               |                               | +                         | +                | Диф. зачет                  |
| Тема 2.2        | _                                                               | +                             |                           | +                | Диф. зачет                  |

|            |                |                |              | +           |            |
|------------|----------------|----------------|--------------|-------------|------------|
| Тема 2.3   |                | +              |              | +           | Диф. зачет |
| Раздел     | 3. Элементы ли | инейной алгебр | ы и аналитич | неской геом | иетрии     |
| Тема 3.1   |                | +              |              | +           | Диф. зачет |
| Тема 3.2   |                |                | +            | +           | Диф. зачет |
|            | Раздел 4       | . Линейное пр  | ограммирова  | ние         |            |
| Тема 4.1   |                |                |              | +           | Диф. зачет |
| Тема 4.2   |                |                |              | +           | Диф. зачет |
| Входное те | <br>стирование |                |              |             |            |

| DAOGIOC Teernpobumie                                                         |                       |                                                              |                               |                                     |  |  |
|------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|-------------------------------|-------------------------------------|--|--|
| ВАРИАНТ 1                                                                    |                       |                                                              |                               |                                     |  |  |
| 1.                                                                           | Вычислить:            | $\sqrt{125} \cdot \sqrt[5]{32} - 5^{\frac{1}{2}}$            |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            | $\Gamma$                      | Д                                   |  |  |
| $11\sqrt{5}$                                                                 | $10\sqrt{2}-\sqrt{5}$ | 9                                                            | $9\sqrt{5}$                   | $\sqrt[10]{4000} - \sqrt{5}$        |  |  |
| 2                                                                            | Вычислить:            | $\frac{\sin 45^{\circ} \cos 15^{\circ} - \cos 15^{\circ}}{}$ | $845^{\circ} \sin 15^{\circ}$ |                                     |  |  |
| 4.                                                                           |                       | $2\sin 15^{\circ} \cos$                                      |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            | $\Gamma$                      | Д                                   |  |  |
| 1                                                                            | 1/2                   | $\sqrt{3}/2$                                                 | $1/\sqrt{3}$                  | $\sqrt{3}$                          |  |  |
| 3.                                                                           | Выберите то           | очку, через кот                                              | торую проход                  | цит график функции:                 |  |  |
|                                                                              | y=2x+1                |                                                              |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            | $\Gamma$                      |                                     |  |  |
| M(3;7)                                                                       | N(3;                  | (9) $K(4)$                                                   | ;8)                           | P(4;9)                              |  |  |
| 4.                                                                           | Найти облас           | ть определения                                               | функции: у=                   | $= \lg(16-x^2)$                     |  |  |
| A                                                                            | Б                     | В                                                            |                               | Γ                                   |  |  |
| (-4;-2)∪                                                                     | ` ' '                 | $(4;\infty)$                                                 | (-4;4)                        | $(-4;\infty)$                       |  |  |
| 5.                                                                           | Вычислить:            | $2 \log_5 25 + 3 \log_2 64$                                  |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            |                               | Γ                                   |  |  |
| 8                                                                            | 12                    | 18                                                           |                               | 22                                  |  |  |
|                                                                              | Решить урав           | нение: tg5x=-1                                               |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            |                               | Γ                                   |  |  |
| $(-1)^{n}\pi/3+$                                                             | -2πn                  | $(-1)^{n} 2\pi/3 + 2\pi n$                                   | $-\pi/20+\pi n/5$             | $3\pi/20+\pi n/5, n \in \mathbb{Z}$ |  |  |
| 7. Вычислить предел: $\lim_{x \to \infty} \frac{2x^4 - 3x^2 - 1}{3x^4 - 5x}$ |                       |                                                              |                               |                                     |  |  |
| A                                                                            | Б                     | В                                                            | $\Gamma$                      | Д                                   |  |  |



**Критерий оценивания теста:** За каждый правильный ответ дается один балл. Если курсант набрал 4-5 баллов - оценка «удовлетворительно», 6-7 баллов - оценка «хорошо», 8 баллов - оценка отлично.

#### Ответы на тест

#### Вариант 1

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| Г | a | б | В | Γ | В | В | a |

#### Вариант 2

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| б | В | Г | б | б | б | б | Γ |

#### Оценочные материалы для проведения текущего контроля.

#### Экспресс опрос на лекциях по текущей теме (экспресс-тестирование).

| Вопросы                                                                   | Рекомендуемое содержание ответа                                                                                       |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                                           | (источник)                                                                                                            |
| Тема 1.1                                                                  |                                                                                                                       |
| 1. Дайте определение функции.                                             | Конспект лекций по дисциплине Математика для курсантов 2 курса / сост.                                                |
| 2. Что такое область определения и множество значений функции?            | И. А. Драчева. – Керчь, 2021 г., с. 44. Математика, практикум для курсантов 2 курса очной формы обучения / сост. И.А. |
| 3. Какие функции называются возрастающими, убывающими, монотонными?       | ДрачеваКерчь, 2022, с.60                                                                                              |
| 4. Какие функции называются<br>периодическими?                            |                                                                                                                       |
| 5. Назовите элементарные функции, приведите их графики.                   |                                                                                                                       |
| 6. Дайте определение предела функции.                                     |                                                                                                                       |
| 7. Какие функции называются бесконечно малыми, какие бесконечно большими? |                                                                                                                       |
| 8. Какие виды неопределенности вы знаете?                                 |                                                                                                                       |
| 9. Как раскрываются неопределенности $\frac{\infty}{\infty}$              |                                                                                                                       |

| 0                                          |                                             |
|--------------------------------------------|---------------------------------------------|
| $\frac{\sqrt{9}}{0}$                       |                                             |
| 10. Напишите формулы первого               |                                             |
| замечательного предела.                    |                                             |
| 11. Напишите формулу второго               |                                             |
| замечательного предела.                    |                                             |
| 12. Что такое производная функции?         | Конспект лекций по дисциплине               |
| 13. Рассказать правила дифференцирования   | Математика для курсантов 2 курса / сост. И. |
| и таблицу производных.                     | А. Драчева. – Керчь, 2021 г., с. 44.        |
| 14. В чем заключается механический и       | Математика, практикум для курсантов 2       |
| геометрический смысл производной?          | курса очной формы обучения / сост. И.А.     |
| 15. Пусть функция Q(t) - количество        | 1                                           |
| электричества, проходящего через           | ДрачеваКерчь, 2022, с.60                    |
| поперечное сечение проводника за время t.  |                                             |
| Что найдем, взяв производную от этой       |                                             |
| функции?                                   |                                             |
| 16. Рассказать правило нахождения          |                                             |
| производной сложной функции.               |                                             |
| 17. Какие точки называются точками         |                                             |
| экстремума функции?                        |                                             |
| 18. Как найти экстремумы функции,          |                                             |
| интервалы выпуклости, вогнутости?          |                                             |
| 19. Как найти точки перегиба, интервалы    |                                             |
| выпуклости, вогнутости графика функции?    |                                             |
| 20. Приведите общую схему исследования     |                                             |
| функции и построения графика.              |                                             |
| функции и постросния графика.              |                                             |
|                                            |                                             |
| 21. Что называется первообразной?          | Конспект лекций по дисциплине               |
| 22. Дайте определение неопределенного      | Математика для курсантов 2 курса / сост. И. |
| интеграла.                                 | А. Драчева. – Керчь, 2021 г., с. 44.        |
| 23. Перечислите свойства неопределенного   | Математика, практикум для курсантов 2       |
| интеграла.                                 | курса очной формы обучения / сост. И.А.     |
| 24. В чем заключается метод подстановки?   | ДрачеваКерчь, 2022, с.60                    |
|                                            | дри юви. Тер ів, 2022, 6.00                 |
| 25. Какая геометрическая задача приводит к |                                             |
| понятию определенного интеграла?           |                                             |
| 26. Назовите основные свойства             |                                             |
| определенного интеграла.                   |                                             |
| 27. Напишите формулу Ньютона-Лейбница.     |                                             |
| T - F 7 2 2 2 2 2 2                        |                                             |
| 28. Как найти площадь плоской фигуры с     |                                             |
| помощью определенного интеграла?           |                                             |
| 1                                          |                                             |
| 29. Каков физический смысл определенного   |                                             |
| интеграла?                                 |                                             |
| Тема                                       | 1.2                                         |
| 1. Дайте определение дифференциального     | Конспект лекций по дисциплине               |
| уравнения.                                 | Математика для курсантов 2 курса сост. И.   |
| <u> </u>                                   | 1 71 71                                     |

| <ol> <li>Что является решением дифференциального уравнения?</li> <li>Дайте понятие общего и частного решения ДУ.</li> <li>Сформулируйте задачу Коши.</li> <li>Какие уравнения называются уравнениями с разделяющимися переменными?</li> <li>Дайте определение ДУ второго порядка.</li> <li>Расскажите о ДУ 2-го порядка, допускающих понижение порядка.</li> <li>Дайте определение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами.</li> <li>Что такое характеристическое уравнение? Как оно составляется?</li> </ol> | А. Драчева. – Керчь, 2021 г., с. 44. Математика, практикум для курсантов 2 курса очной формы обучения / сост. И.А. ДрачеваКерчь, 2022, с.60 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 11. Расскажите, как находится общее                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| решение ЛОДУ 2 –го порядка с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
| постоянными коэффициентами.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             |
| постояниями коэффиционтиями.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             |
| Тема                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.3                                                                                                                                         |
| 1. Дайте определение числового ряда                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Конспект лекций по дисциплине                                                                                                               |
| 2. Какой ряд называется сходящимся?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Математика для курсантов 2 курса / сост.                                                                                                    |
| 3. Дайте определение знакочередующегося                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | И. А. Драчева. – Керчь, 2021 г., с. 44.                                                                                                     |
| ряда                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Математика, практикум для курсантов 2                                                                                                       |
| 4. Сформулируйте признак Лейбница для                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | курса очной формы обучения / сост. И.А.                                                                                                     |
| знакочередующихся рядов.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ДрачеваКерчь, 2022, с.60                                                                                                                    |
| 5. Какой ряд называется степенным?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                             |
| 6. Что такое радиус сходимости                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                             |
| степенного ряда?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                             |
| 7. Напишите формулу ряда Тейлора.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| 8. Напишите формулу ряда Маклорена.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |
| 9. Где применяются ряды?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u><br>2 1                                                                                                                             |
| 1. Дайте определение события.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>2.1</b> Конспект лекций по дисциплине                                                                                                    |
| т. данге определение сообии.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Математика для курсантов 2 курса / сост.                                                                                                    |
| 2. Какие события называются достоверными,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | И. А. Драчева. – Керчь, 2021 г., с. 44.                                                                                                     |
| невозможными, случайными?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Математика, практикум для курсантов 2                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | курса очной формы обучения / сост. И.А.                                                                                                     |
| 3. Приведите формулу и свойства классической вероятности.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ДрачеваКерчь, 2022, с.60                                                                                                                    |
| 4. Дайте определение дискретной и непрерывной случайной величины.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                             |
| 5. Что называется законом распределения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                             |

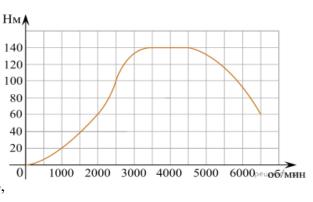
| случайной величины?                                                                               |  |
|---------------------------------------------------------------------------------------------------|--|
| 6. Дайте определение и формулу вычисления математического ожидания дискретной случайной величины. |  |
| 7. Дайте определение и формулу вычисления дисперсии случайной величины.                           |  |

**Критерий оценивания экспресс- теста:** курсанту задается три вопроса. Если курсант отвечает на все вопросы четко и полно - оценка «отлично», если курсанту требуются незначительные подсказки, но видно, что он понял тему, ориентируется в формулах и понятиях - оценка «хорошо». Если из трех вопрос отвечает на один - оценка «удовлетворительно».

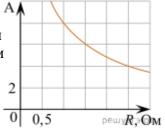
#### Математический диктант

| Тема 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| Найти производную функции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ответы                 |  |  |  |  |  |
| $1.  y = -3x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6x                    |  |  |  |  |  |
| $2.  y = 2\sqrt{x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{\sqrt{x}}$   |  |  |  |  |  |
| $3.  y = 3^x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $3^x \ln 3$            |  |  |  |  |  |
| $4.  y = \sin x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cosx                   |  |  |  |  |  |
| $5.  y = \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $-\sin x$              |  |  |  |  |  |
| $6.  y = \ln x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{x}$          |  |  |  |  |  |
| 7. $y = 3x^3 - 4x + 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $9x^2 - 4$             |  |  |  |  |  |
| $8.  y = \sin 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3\cos 3x$             |  |  |  |  |  |
| $9.  y = e^{-2x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $-2e-2^x$              |  |  |  |  |  |
| $10. \ y = \sin^2 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\sin x \cdot \cos x$ |  |  |  |  |  |
| University and an angle page 10 and anyly by the the treat and a contract the first term of the contract terms |                        |  |  |  |  |  |

**Критерий оценивания:** все 10 заданий выполнены верно - оценка «отлично», 7-9 заданий выполнены верно - оценка «хорошо», 5-6 - оценка «удовлетворительно».

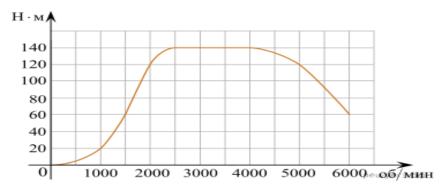

#### Письменная работа по теме

#### Тема 1.1


#### Письменная работа №1

#### Вариант 1

На графике изображена зависимость момента автомобильного двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту. На оси ординат — крутящий момент в Н м. Чтобы автомобиль начал движение. крутящий момент должен быть не менее 60 Н⋅м. Какое наименьшее число оборотов двигателя в минуту достаточно, чтобы автомобиль начал лвижение?




Мощность отопителя в автомобиле регулируется дополнительным сопротивлением, которое можно менять, поворачивая рукоятку в салоне машины. При этом меняется сила тока в электрической цепи электродвигателя — чем меньше сопротивление, тем больше сила тока и тем быстрее вращается мотор отопителя. На рисунке показана зависимость силы тока от величины сопротивления. На оси абсцисс откладывается сопротивление (в омах), на оси ординат — сила тока в амперах. Ток в цепи электродвигателя уменьшился с 8 до 6 ампер. На сколько



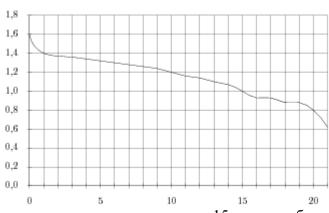
Омов при этом увеличилось сопротивление цепи?

На графике показана зависимость крутящего момента автомобильного двигателя от числа его оборотов в минуту. На оси абсцисс откладывается число оборотов в минуту. На оси ординат — крутящий момент в H · м.



Пользуясь графиком, поставьте в соответствие каждому интервалу количества оборотов двигателя характеристику зависимости крутящего момента двигателя на этом интервале.

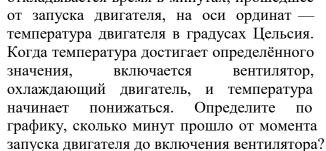
#### ХАРАКТЕРИСТИКИ ПРОЦЕССА

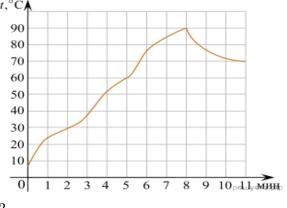

- А) крутящий момент не менялся
- Б) крутящий момент падал
- В) крутящий момент рос быстрее всего
- $\Gamma$ ) крутящий момент не превышал  $60~{
  m H}\cdot{
  m m}$

#### ИНТЕРВАЛЫ ОБОРОТОВ

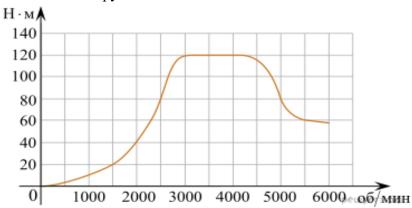
- 1) 0 1500 об/мин.
- 2) 1500 2000 об/мин.
- 3) 2500 4000 об/мин.
- 4) 4000 6000 об/мин.

#### Вариант 2.


1. При работе фонарика батарейка постепенно разряжается, электрической 1,4 напряжение цепи фонарика падает. рисунке показана зависимость напряжения в цепи от времени работы фонарика. Ha горизонтальной оси отмечается время работы фонарика в часах, на вертикальной оси напряжение в вольтах.




Определите по рисунку, на сколько вольт упадет напряжение за 15 часов работы фонарика.


2. На графике показано изменение температуры в зависимости от времени в

процессе разогрева двигателя легкового t,°C автомобиля при температуре 10°C 90 окружающего воздуха . На оси абсцисс 80 откладывается время в минутах, прошедшее 70 60 от запуска двигателя, на оси ординат — 50 температура двигателя в градусах Цельсия. 40 Когда температура достигает определённого





3. На графике изображена зависимость крутящего момента двигателя от числа оборотов в минуту. На горизонтальной оси отмечено число оборотов в минуту, на вертикальной оси — крутящий момент в  $\mathbf{H} \cdot \mathbf{m}$ .



Пользуясь графиком, поставьте в соответствие каждому интервалу числа оборотов в минуту характеристику крутящего момента.

ИНТЕРВАЛЫ

ХАРАКТЕРИСТИКИ

- А) 0-2000 об./мин.
- 1) крутящий момент не меняется на всём интервале
- Б) 2000–3000 об./мин.
- 2) при увеличении числа оборотов самый быстрый рост крутящего момента
- В) 3000-4000 об./мин.
- 3) крутящий момент не превышает 40  ${
  m H}\cdot {
  m m}$  на всём интервале
- Г) 4000–6000 об./мин.
- 4) при увеличении числа оборотов крутящий момент падает

#### Критерий оценивания письменной работы № 1:

Одно задание выполнено правильно - оценка «удовлетворительно», два задания выполнено правильно - оценка «хорошо», три задания - оценка «отлично».

Ответы.

Вариант 1. 1. 2000; 2. 1,5; 3. 3421.

Вариант 2. 1. 0,6; 2. 8; 3. 3214.

Письменная работа № 2

| Вариант 1 |
|-----------|
|-----------|

Вычислить пределы

1) 
$$\lim_{x \to \infty} \frac{1 - 3x - 5x^2}{10x^2 + 3}$$

2) 
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 + x - 6}$$

$$3) \lim_{x \to 0} \frac{\sin 2x}{3x}$$

4) 
$$\lim_{x \to 1} \frac{x + 3x^3}{x - 1}$$

Вариант 2

Вычислить пределы

1) 
$$\lim_{x \to \infty} \frac{1 - 6x^3}{2x^3 + 3x^2 + 3}$$

2) 
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2}$$

$$3) \lim_{x \to 0} \frac{\sin 5x}{10x}$$

4) 
$$\lim_{x \to \infty} \frac{3}{x+9}$$

#### Критерий оценивания письменной работы № 2:

Все четыре задания выполнены верно - оценка «отлично»,

Три задания выполнены верно - оценка «хорошо», два задания - оценка «удовлетворительно».

Решение и ответы.

Вариант 1.

1) 
$$\lim_{x \to \infty} \frac{1 - 3x - 5x^2}{10x^2 + 3} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{3x}{x^2} - \frac{5x^2}{x^2}}{\frac{10x^2}{x^2} + \frac{3}{x^2}} = \lim_{x \to \infty} \frac{\frac{1}{x^2} - \frac{3}{x} - 5}{10 + \frac{3}{x^2}} = \frac{0 - 0 - 5}{10 + 0} = -\frac{1}{2}$$

2) 
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 + x - 6} = \lim_{x \to -3} \frac{x(x+3)}{(x+3)(x-2)} = \lim_{x \to -3} \frac{x}{x-2} = \frac{3}{5}$$

3) 
$$\lim_{x \to 0} \frac{\sin 2x}{3x} = \lim_{x \to 0} \frac{2\sin 2x}{3 \cdot 2x} = \frac{2}{3} \lim_{x \to 0} \frac{\sin 2x}{2x} = \frac{2}{3}$$

4) 
$$\lim_{x \to 1^+} \frac{x + 3x^3}{x - 1} = \frac{1 + 3}{1 - 1} = \frac{4}{+0} = +\infty$$

Вариант 2.

1) 
$$\lim_{x \to \infty} \frac{1 - 6x^3}{2x^3 + 3x^2 + 3} = \lim_{x \to \infty} \frac{\frac{1}{x^3} - \frac{6x^3}{x^3}}{\frac{2x^3}{x^3} + \frac{3x^2}{x^3} + \frac{3}{x^3}} = \lim_{x \to \infty} \frac{\frac{1}{x^3} - 6}{2 + \frac{3}{x^3} + \frac{3}{x^3}} = \frac{0 - 6}{2 + 0 + 0} = -3$$

2) 
$$\lim_{x \to -2} \frac{x^2 + 3x + 2}{x + 2} = \lim_{x \to -2} \frac{(x + 2)(x + 1)}{x + 2} = \lim_{x \to -2} (x + 1) = -1$$

3) 
$$\lim_{x\to 0} \frac{\sin 5x}{10x} = \lim_{x\to 0} \frac{\sin 5x}{2 \cdot 5x} = \frac{1}{2} \lim_{x\to 0} \frac{\sin 5x}{5x} = \frac{1}{2}$$

4) 
$$\lim_{x \to \infty} \frac{3}{x+9} = \frac{3}{\infty} = 0$$

#### Письменная работа № 3

#### Вариант 1.

1. Материальная точка движется прямолинейно по закону

$$x(t) = 6t^2 - 48t + 17$$

(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость (в м/с) в момент времени t = 9 с.

2. Найти экстремумы функции

$$y = \frac{x-3}{x^2 + 16}$$

#### Вариант 2.

1. Материальная точка движется прямолинейно по закону

$$x(t) = \frac{1}{2}t^3 - 3t^2 + 2t$$

(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени t = 6 с.

2. Найти экстремумы функции

$$y = 2x^2 - 5x + \ln x - 5$$

#### Критерий оценивания письменной работы № 3:

Все задания выполнены верно - оценка «отлично», допущены незначительные ошибки в вычислениях - оценка «хорошо», одно задание выполнено верно - оценка «удовлетворительно».

#### Решение и ответы:

#### Вариант 1.

**1.** Находим производную  $v = x'(t) = (6t^2 - 48t + 17)' = 12t - 48$ . Подставляем заданное время  $v = 12 \cdot 9 - 48 = 60 \text{ m/c}$ .

Ответ: 60

2. Находим производную

$$y' = \left(\frac{x-3}{x^2+16}\right)' = \frac{x^2+16-(x-3)\cdot 2x}{(x^2+16)^2} = \frac{-x^2+6x+16}{(x^2+16)^2}.$$

Решаем уравнение  $\frac{-x^2+6x+16}{(x^2+16)^2} = 0$ . Получаем значения x=8 и x=-2.

Определяем знак производной в интервалах и поведение функции:

|           | (-∞;-2) | x = -2    | (-2;8)     | x = 8     | (8;+∞)  |
|-----------|---------|-----------|------------|-----------|---------|
| <i>y'</i> | -       | 0         | +          | 0         | -       |
| У         | Убывает | Точка тіп | возрастает | Точка тах | убывает |

Ответ: x = -2 - точка минимума, x = 8 - точка максимума.

#### Вариант 2.

**1.** Находим производную  $v = x'(t) = (\frac{1}{2}t^3 - 3t^2 + 2t)' = \frac{3}{2}t^2 - 6t + 2$ . Подставляем заданное время  $v = \frac{3}{2} \cdot 36 - 36 + 2 = 20 \text{ m/c}$ .

Ответ: 20

**2.** Находим производную  $y' = (2x^2 - 5x + \ln x - 5)' = 4x - 5 + \frac{1}{x} = \frac{4x^2 - 5x + 1}{x}$ .

Решаем уравнение  $\frac{4x^2-5x+1}{x}=0$ . Получаем значения  $x=\frac{1}{4}$  и x=1.

Определяем знак производной в интервалах и поведение функции:

| -  | -                 | •                 |                   |              |            |
|----|-------------------|-------------------|-------------------|--------------|------------|
|    | $(0;\frac{1}{4})$ | $x = \frac{1}{4}$ | $(\frac{1}{4};1)$ | <i>x</i> = 1 | (1;+∞)     |
| y' | +                 | 0                 | -                 | 0            | +          |
| У  | возрастает        | Точка тах         | Убывает           | Точка min    | возрастает |

Ответ: x = 1 - точка минимума,  $x = \frac{1}{4}$  - точка максимума.

#### Письменная работа № 4

#### Вариант 1

1. Найти неопределенный интеграл

a) 
$$\int (2^x + \cos x) dx$$
 6)  $\int (6x^2 - 4x + 3) dx$ 

2. Вычислить площади плоской фигуры, ограниченных линиями  $y = -x^2 + 4$ , y = 0

3. Найти количество электричества, проходящего через поперечное сечение проводника за 20 с, если сила тока изменяется по закону I(t) = 2t + 1(A).

#### Вариант 2

1. Найти неопределенный интеграл

a) 
$$\int (\frac{1}{x} - \sin x) dx$$
 6)  $\int (12x^5 - 3x^2 - 7) dx$ 

2. Вычислить площади плоских фигур, ограниченных линиями  $y = x^2 + 2x + 5$ , y = 5 - 2x

3. Тело движется прямолинейно со скоростью v(t) (м/с). Вычислить расстояние, пройденное телом за интервал времени от  $t_1$  до  $t_2$ , если v(t)=5t-3,  $t_1=0$ ,  $t_2=3$ .

#### Критерий оценивания письменной работы № 4:

Все задания выполнены верно - оценка «отлично»,

Выполнено два задания верно - оценка «хорошо», одно задание - оценка «удовлетворительно».

#### Решение и ответы.

Вариант 1.

1. a) 
$$\int (2^x + \cos x) dx = \frac{2^x}{\ln 2} + \sin x + C$$
  
6) 
$$\int (6x^2 - 4x + 3) dx = 2x^3 - 2x^2 + 3x + C$$

2. 
$$S = \int_{-2}^{2} (-x^2 + 4) dx = \left( -\frac{x^3}{3} + 4x \right) \Big|_{-2}^{2} = -\frac{8}{3} + 8 - \frac{8}{3} + 8 = \frac{32}{3} \kappa e.e \partial.$$

27

**3.** 
$$Q = \int_{0}^{20} (2t+1)dt = (t^2+t)\Big|_{0}^{20} = 400 + 20 = 420$$
 (Кл).

#### Вариант 2.

1. a) 
$$\int (\frac{1}{x} - \sin x) dx = \ln|x| + \cos x + C$$
  
6) 
$$\int (12x^5 - 3x^2 - 7) dx = 2x^6 - x^3 - 7x + C$$

**2.** 
$$S = \int_{-4}^{0} (-x^2 - 4x) dx = \left( -\frac{x^3}{3} - 2x^2 \right) \Big|_{-4}^{0} = -\frac{64}{3} + 32 = \frac{32}{3} \kappa e.e \delta.$$

3. 
$$S = \int_{0}^{3} (5t - 3)dt = (\frac{5}{2}t^2 - 3t)\Big|_{0}^{3} = 22.5 - 9 = 13.5 \text{ (M)}.$$

Тема 1.2 Письменная работа № 6

#### Вариант -1

Найти общее решение дифференциальных уравнений, если указаны начальные условия, найти частное решение.

$$1. y' + \frac{\sin x}{\sin y} = 0$$

2. 
$$y'' = 4\cos x - x + 5$$

3. 
$$y'' - 2y' - 3y = 0$$
,  $y(0) = 8$ ,  $y'(0) = 0$ 

#### Вариант -2

Найти общее решение дифференциальных уравнений, если указаны начальные условия, найти частное решение.

1. 
$$y'\sqrt{1-x^2} = 1 + y^2$$

$$2. \quad y'' = e^x + \cos x - 2x^3$$

3. 
$$y'' - 2y' = 0$$
,  $y(0) = 0$ ,  $y'(0) = -1$ 

#### Критерий оценивания письменной работы № 6:

Все задания выполнены верно - оценка «отлично»,

два задания выполнены верно - оценка «хорошо», одно задание - оценка «удовлетворительно».

#### Решение и ответы.

#### Вариант 1.

1. 
$$y' + \frac{\sin x}{\sin y} = 0$$
. Уравнение с разделяющимися переменными.

Разделим переменные:

$$\frac{dy}{dx} = -\frac{\sin x}{\sin y}$$
,  $\sin y dy = -\sin x dx$ .

Проинтегрируем  $\int \sin y dy = -\int \sin x dx$ , получим:

$$-\cos y = \cos x - C$$
 или  $\cos y = C - \cos x$  - общее решение дифференциального уравнения.

Other:  $\cos y = C - \cos x$ 

2. Проинтегрируем уравнение два раза

$$y' = 4\sin x - \frac{1}{2}x^2 + 5x + C_1$$
 
$$y = -4\cos x - \frac{1}{6}x^3 + \frac{5}{2}x^2 + C_1x + C_2$$
- общее решение.

Otbet: 
$$y = -4\cos x - \frac{1}{6}x^3 + \frac{5}{2}x^2 + C_1x + C_2$$

3. 
$$y'' - 2y' - 3y = 0$$
,  $y(0) = 8$ ,  $y'(0) = 0$ .

Составим характеристическое уравнение  $k^2-2k-3=0$ , находим корни  $k_1=-1, k_2=3$  .

Общее решение имеет вид  $y = C_1 e^{-x} + C_2 e^{3x}$ .

Подставляя начальные условия находим  $C_1 = 6$ ,  $C_2 = 2$ .

Частное решение имеет вид  $y = 6e^{-x} + 2e^{3x}$ .

Otbet: 
$$y = C_1 e^{-x} + C_2 e^{3x}$$
,  $y = 6e^{-x} + 2e^{3x}$ .

#### Вариант 2.

**1.**  $y'\sqrt{1-x^2} = 1 + y^2$ . Уравнение с разделяющимися переменными.

Разделим переменные:

$$\frac{dy}{dx}\sqrt{1-x^2} = 1 + y^2$$
,  $\frac{dy}{1+y^2} = \frac{dx}{\sqrt{1-x^2}}$ .

Проинтегрируем 
$$\int \frac{dy}{1+y^2} = \int \frac{dx}{\sqrt{1-x^2}}$$
, получим:

arctgy = arcsin x + C - общее решение дифференциального уравнения.

Ответ: arctgy = arcsin x + C

2. Проинтегрируем уравнение два раза

$$y' = e^x + \sin x - \frac{1}{2}x^4 + C_1$$
  
 $y = e^x - \cos x - \frac{1}{10}x^5 + C_1x + C_2$ - общее решение.

Other: 
$$y = e^x - \cos x - \frac{1}{10}x^5 + C_1x + C_2$$

3. 
$$y'' - 2y' = 0$$
,  $y(0) = 0$ ,  $y'(0) = -1$ 

Составим характеристическое уравнение  $k^2-2k=0$  , находим корни  $k_1=0, k_2=2$  .

Общее решение имеет вид  $y = C_1 + C_2 \cdot e^{2x}$ .

Подставляя начальные условия находим  $C_1 = 0$ ,  $C_2 = -\frac{1}{2}$ .

Частное решение имеет вид  $y = -\frac{1}{2}e^{2x}$ .

Otbet: 
$$y = C_1 + C_2 \cdot e^{2x}$$
,  $y = -\frac{1}{2}e^{2x}$ .

#### Тема 1.3 (письменная работа № 7)

| Вариант 1                                    | Вариант 2                                         |  |  |
|----------------------------------------------|---------------------------------------------------|--|--|
| Вычислить с точностью 0,001, используя       | Вычислить с точностью 0,001, используя            |  |  |
| ряд Маклорена                                | ряд Маклорена                                     |  |  |
| a) $e^{-2}$ 6) $\int_{0}^{1} \sin(x^{2}) dx$ | a) $\sqrt[3]{10}$ 6) $\int_{0}^{0.4} e^{-x^2} dx$ |  |  |

#### Критерий оценивания письменной работы № 7:

Все задания выполнены верно - оценка «отлично», допущены незначительные ошибки в вычислениях - оценка «хорошо», одно задание выполнено верно - оценка «удовлетворительно».

#### Решение и ответы.

Вариант 1.

1. 
$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$$

$$e^{-2} = 1 + \frac{-2}{1!} + \frac{(-2)^2}{2!} + \frac{(-2)^3}{3!} + \frac{(-2)^4}{4!} + \dots = 1 - 2 + 2 - \frac{8}{6} + \frac{16}{24} - \frac{32}{120} + \frac{64}{720} - \frac{128}{5040} + \dots = 1 - 1,333 + 0,667 - 0,267 + 0,089 - 0,025 + 0,006 - \dots \approx 0,137$$

Ответ: 0,137

2. Разложим подынтегральную функцию в ряд и проинтегрируем

$$\int_{0}^{1} \sin(x^{2}) dx = \int_{0}^{1} \left( x^{2} - \frac{x^{6}}{6} + \frac{x^{10}}{120} - \frac{x^{14}}{5040} + \dots \right) dx = \left( \frac{x^{3}}{3} - \frac{x^{7}}{42} + \frac{x^{11}}{11 \cdot 120} - \dots \right) \Big|_{0}^{1} = \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} - \dots \approx 0,326$$

Ответ: 0,326

#### Вариант 2.

**1.** Разложим функцию  $y = \sqrt[3]{1+x}$  в ряд Маклорена, используя биноминальный ряд:

30

$$\sqrt[3]{1+x} = (1+x)^{\frac{1}{3}} = 1 + \frac{\frac{1}{3}}{\frac{1!}{2}}x + \frac{\frac{1}{3}(\frac{1}{3}-1)}{2!}x^2 + \frac{\frac{1}{3}(\frac{1}{3}-1)(\frac{1}{3}-2)}{3!}x^3 + \dots =$$

$$= 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 - \frac{10}{243}x^4 + \dots$$

$$\sqrt[3]{10} = \sqrt[3]{8+2} = \sqrt[3]{8(1+0.25)} = 2(1+0.25)^{\frac{1}{3}} = 2(1+\frac{1}{3}0.25 - \frac{1}{9}(0.25)^2 + \dots$$

$$+ \frac{5}{81}90.25)^3 - \frac{10}{243}(0.25)^4 + \dots = 2(1+0.0833 - 0.0069 + 0.00096) \approx 2.1547$$

Ответ: 2,1547

2. Разложим подынтегральную функцию в ряд и проинтегрируем

$$\int_{0}^{0.4} e^{-x^{2}} dx = \int_{0}^{0.4} \left( 1 - \frac{x^{2}}{1} + \frac{x^{4}}{2} - \frac{x^{6}}{6} + \frac{x^{8}}{24} + \dots \right) dx = \left( x - \frac{x^{3}}{3} + \frac{x^{5}}{10} - \frac{x^{7}}{42} - \dots \right) \Big|_{0}^{0.4} = 0, 4 - \frac{0,064}{3} + \frac{0,01024}{10} - \frac{0,0016384}{42} - \dots \approx 0, 4 - 0,0213 + 0,00004 \approx 0,379$$
Other: 0.379

#### Тема 2.1

#### Письменная работа № 8

#### Вариант 1

- 1. В ящике имеется 11 одинаковых шаров. Причем 4 из них окрашены в синий цвет, а остальные белые. Наудачу извлекают 5 шаров. Найти вероятность того, что среди них 2 синих.
- 2. Найти математическое ожидание и дисперсию случайной величины, зная закон ее распределения.

| X | -2  | 2   | 3   | 4   | 7   |
|---|-----|-----|-----|-----|-----|
| P | 0,3 | 0,1 | 0,2 | 0,3 | 0,1 |

#### Вариант 2

- 1. В ящике 15 шаров: 7 синих и 8 желтых. Наудачу из ящика вынули один шар, а затем второй (не возвращая их обратно). Найти вероятность того, что первый из взятых шаров синий, а второй желтый.
- 2. Найти математическое ожидание и дисперсию случайной величины, знай ее закон распределения.

| X | 1   | 1,5 | 2    | 3   | 5    |
|---|-----|-----|------|-----|------|
| P | 0,1 | 0,3 | 0,25 | 0,2 | 0,15 |

#### Критерий оценивания письменной работы № 8:

Все задания выполнены верно - оценка «отлично», допущены незначительные ошибки в вычислениях - оценка «хорошо», одно задание выполнено верно - оценка «удовлетворительно».

#### Решение и ответы

#### Вариант 1

**1.** Обозначим A – событие, состоящее в том, что среди извлеченных 5 шаров 2 синих.

$$P(A) = \frac{m}{n} = \frac{C_4^2 \cdot C_7^3}{C_{11}^5} = \frac{210}{462} = \frac{35}{77}, \text{ где}$$

$$n = C_{11}^5 = \frac{11!}{5!(11-5)!} = \frac{11!}{5!6!} = \frac{6!7 \cdot 8 \cdot 9 \cdot 10 \cdot 11}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6!} = 462.$$

$$m = C_4^2 \cdot C_7^3 = \frac{4!}{2!(4-2)!} \cdot \frac{7!}{3!(7-3)!} = \frac{4!}{2 \cdot 2} \cdot \frac{7!}{3!4!} = \frac{3!4 \cdot 5 \cdot 6 \cdot 7}{4 \cdot 3!} = 210.$$

**2.** Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i = -2 \cdot 0.3 + 2 \cdot 0.1 + 3 \cdot 0.2 + 4 \cdot 0.3 + 7 \cdot 0.1 = 2.1.$$

Для вычисления дисперсии воспользуемся формулой:

$$D(X) = M(X^2) - [M(X)]^2.$$

$$D(X) = M(X^{2}) - [M(X)]^{2} = 4 \cdot 0.3 + 4 \cdot 0.1 + 9 \cdot 0.2 + 16 \cdot 0.3 + 49 \cdot 0.1 - (2.1)^{2} = 13.1 - 4.41 = 8.69$$

32

#### Вариант 2

**1.** Событие A – первый взятый шар синий. Вероятность события A:  $P(A) = \frac{7}{15}$ .

Событие B – второй взятый шар желтый. Вероятность события B, вычисленная в предположении, что первый шар синий (т.е. условная вероятность) равна:

$$P_{A}(B) = \frac{8}{14} = \frac{4}{7}.$$

Искомая вероятность по теореме умножения вероятностей зависимых событий равна:

$$P(A \cdot B) = P(A) \cdot P_A(B) = \frac{7}{15} \cdot \frac{4}{7} = \frac{4}{15}$$

**2.** Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

$$M(X) = \sum_{i=1}^{n} x_i \cdot p_i = 1 \cdot 0.1 + 1.5 \cdot 0.3 + 2 \cdot 0.25 + 3 \cdot 0.2 + 5 \cdot 0.15 = 2.4.$$

Для вычисления дисперсии воспользуемся формулой:

$$D(X) = M(X^{2}) - [M(X)]^{2}$$
.

$$D(X) = M(X^{2}) - [M(X)]^{2} = 1^{2} \cdot 0.1 + (1.5)^{2} \cdot 0.3 + 2^{2} \cdot 0.25 + 3^{2} \cdot 0.2 + 5^{2} \cdot 0.15 - (2.4)^{2} = 0.1 + 0.675 + 1 + 1.8 + 3.75 - 5.76 = 1.565$$

#### Итоговый тест

1. Вычислить предел  $\lim_{x\to\infty} \frac{2}{5-4x^2}$ 

| A   | Б    | В | Γ |
|-----|------|---|---|
| 2/5 | -1/2 | 0 | 8 |

**2.** Найдите производную функции  $f(x) = \frac{1}{2}x^2 - 6x + 5$ .

| A                            | Б                            | В             | Γ             |
|------------------------------|------------------------------|---------------|---------------|
| $f'(x) = \frac{1}{6}x^3 - 1$ | $f'(x) = \frac{1}{3}x^3 - 6$ | f'(x) = x - 1 | f'(x) = x - 6 |

**3.** Найти точку минимума функции  $y = x^3 - 6x^2 + 9x$ 

| A     | Б         | В      | Γ      |
|-------|-----------|--------|--------|
| (1;4) | (-1; -16) | (3; 0) | (-3;0) |

**4.** Вычислить неопределенный интеграл  $\int \sin 3x dx$ 

| A              | Б               | В                        | Γ                         |
|----------------|-----------------|--------------------------|---------------------------|
| $3\cos 3x + C$ | $-3\cos 3x + C$ | $\frac{1}{3}\cos 3x + C$ | $-\frac{1}{3}\cos 3x + C$ |

**5.** Вычислить определенный интеграл  $\int_{2}^{3} 5x^4 dx$ 

| A   | Б   | В   | Γ   |
|-----|-----|-----|-----|
| 129 | 171 | 201 | 211 |

6. Указать дифференциальное уравнение второго порядка

| A               | Б                   | В                       | Γ                     |
|-----------------|---------------------|-------------------------|-----------------------|
| $xy' - y = y^3$ | $y''' = x - \sin x$ | $y'' + (x^2 - 1)y' = 0$ | $\frac{dy}{dx} = x^2$ |

7. Продолжить предложение: решением дифференциального уравнения является...

| A                                  | Б      | В       | Γ           |
|------------------------------------|--------|---------|-------------|
| Пара чисел ( <i>x</i> ; <i>y</i> ) | корень | функция | производная |

**8.** Вычислить с помощью ряда Маклорена интеграл  $\int_{0}^{0.25} e^{-x^2} dx$  с точностью 0,001

|      | 0     |        |       |  |  |
|------|-------|--------|-------|--|--|
| A    | Б     | В      | Γ     |  |  |
| 0,25 | 0,351 | 0,2448 | 0,324 |  |  |

**9.** Маховик, задерживаемый тормозом, вращается по закону  $f(t) = 4t - 0.25t^2$  (время t- в секундах, угол  $\varphi(t)$  - в радианах). В какой момент времени он остановится?

| A         | Б        | В         | Γ         |
|-----------|----------|-----------|-----------|
| 16 секунд | 8 секунд | 10 секунд | 20 секунд |

**10.** Через поперечное сечение проводника в каждый момент времени t проходит заряд  $q(t) = 5\sqrt{2t+5}$  (q измеряется в кулонах, а t - в секундах). Найдите силу тока в момент времени t=10 с.

| A   | Б   | В    | Γ     |
|-----|-----|------|-------|
| 1 A | 5 A | 25 A | 2,5 A |

**11.** Найдите путь, который пройдет тело от начала движения до остановки, если его скорость  $v(t) = 18t - 6t^2$ 

| A    | Б    | В    | Γ    |
|------|------|------|------|
| 12 м | 32 м | 27 м | 15 м |

**12.** Сила тока в проводнике со временем изменяется по закону i(t) = 4 + 2t. Какое количество электричества пройдет через поперечное сечение проводника за время от 2-й до 6-й секунды?

| A     | Б     | В     | Γ     |  |  |
|-------|-------|-------|-------|--|--|
| 24 Кл | 48 Кл | 12 Кл | 46 Кл |  |  |

13. Во время медицинского обследования кровяного давления у курсантов (в условиях

vчебной нагрузки) получены такие результаты:

| 112 | 114 | 116 | 118 | 120 | 122 | 124 | 126 | 128 | 130 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 5   | 20  | 30  | 40  | 40  | 30  | 20  | 10  | 3   | 2   |

Найдите среднее значение выборки.

| A      | Б   | В     | Γ      |  |  |
|--------|-----|-------|--------|--|--|
| 119,42 | 119 | 120,2 | 122,24 |  |  |

14. В коробке лежат 10 деталей, из которых две бракованные. Механик для ремонта берет деталь не проверяя её. Найдите вероятность того, что ему не придется переделывать работу.

| A   | Б   | В   | Γ   |
|-----|-----|-----|-----|
| 0,2 | 0,8 | 0,1 | 0,9 |

15. Какой числовой ряд можно исследовать по признаку Лейбница?

| 1 7               | 1 71          | 1 3               |           |  |
|-------------------|---------------|-------------------|-----------|--|
| A                 | Б             | В                 | Γ         |  |
| Все числовые ряды | положительные | знакочередующиеся | степенные |  |

**16.** Найти общее решение дифференциального уравнения y'' + 9y = 0

| A                               | Б                         | В                              | Γ              |  |
|---------------------------------|---------------------------|--------------------------------|----------------|--|
| $y = C_1 \cos 3x + C_2 \sin 3x$ | $y = (C_1 + C_2 x)e^{3x}$ | $y = C_1 e^{-3x} + C_2 e^{3x}$ | $y = Cxe^{3x}$ |  |

#### Критерий оценивания теста:

За каждый правильной ответ дается один балл. Если студент набрал 8-10 баллов - оценка «удовлетворительно», 11-14 баллов - оценка «хорошо», 15-16 баллов - оценка «отлично».

#### Ответы

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| В | Γ | В | Γ | Γ | В | В | Γ | Б | A  | В  | Б  | A  | Б  | В  | A  |

#### Вопросы для подготовки к зачету

- 1. Понятие функции.
- 2. Основные характеристики функций.
- 3. Основные элементарные функции и их графики.
- 4. Понятие производной функции.
- 5. Геометрический смысл производной. Уравнение касательной к графику функции.
- 6. Физический смысл производной. Нахождение скорости и ускорения движения точки.
- 7. Производная суммы нескольких функций.

- 8. Производная произведения двух функций.
- 9. Производная частного двух функций.
- 10. Правило вычисления производной сложных функций.
- 11. Таблица производных.
- 12. Производные высших порядков.
- 13. Необходимое и достаточные условия точки экстремума. Промежутки монотонности функции.
- 14. Необходимое и достаточное условия точки перегиба. Промежутки выпуклости (вогнутости) функции.
- 15. Асимптоты.
- 16. Общая схема исследования функции с помощью производной. Построение графиков.
- 17. Понятие первообразной функции и неопределенного интеграла.
- 18. Свойства неопределенного интеграла.
- 19. Основные методы интегрирования (непосредственное, подстановкой).
- 20. Понятие определенного интеграла. Формула Ньютона-Лейбница.
- 21. Геометрические приложения определенного интеграла. (вычисление площади, объема)
- 22. Дифференциальные уравнения. Основные понятия.
- 23. Дифференциальные уравнения 1-го порядка с разделяющимися переменными (определение и способ решения).
- 24. Дифференциальные уравнения высших порядков. ДУ второго порядка. Основные понятия
- 25. Линейные однородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами. Характеристическое уравнение.
- 26. Числовые ряды. Сходящиеся и расходящиеся числовые ряды.
- 27. Знакочередующиеся ряды. Признак Лейбница.
- 28. Степенные ряды. Область сходимости степенного ряда.
- 29. Ряды Тейлора и Маклорена.
- 30. Разложение некоторых элементарных функций в ряд Маклорена.
- 31. Некоторые приложения степенных рядов.
- 32. Понятие события и вероятность события.
- 33. Дискретная и непрерывная случайная величина.
- 34. Закон распределения и полигон распределения дискретной случайной величины.
- 35. Математическое ожидание дискретной случайной величины.
- 36. Дисперсия и среднее квадратическое отклонение дискретной случайной величины.